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The D’yakov-Kontorovich Instability of Shock Waves in Real Gases
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In the 1950s, D’yakov and Kontorovich predicted that under certain conditions perturbed shock waves
in nonideal gases can become unstable by emitting undamped sound and entropy-vortex waves. For
the last 45 years, though, little progress has been made in the identification and numerical modeling of
physical conditions for which this phenomenon might occur. Using a van der Waals equation of state,
we present for the first time a dynamical simulation of a D’yakov-Kontorovich instability. The two-
dimensional emission pattern of acoustic waves appearing in the simulation agrees with the prediction
of a linearized theory.

PACS numbers: 47.40.Nm, 47.35.+ i, 51.30.+ i
The stability of shock waves ranks as one of the fun-
damental problems of fluid dynamics. Along with the
celebrated Rayleigh-Taylor [1] and Kelvin-Helmholtz [2]
instabilities, the behavior of shocks subject to small per-
turbations is important in many hydrodynamic systems,
including astrophysical environments [3] and inertial con-
finement fusion (ICF) targets [4]. D’yakov [5] was the
first to investigate the stability of a plane shock wave with
“corrugations” on its surface, and identified conditions un-
der which such perturbations would grow exponentially in
time. D’yakov’s analysis (later corrected by Kontorovich
[6]) also yielded a regime in which perturbations to the pla-
narity of a shock front were apparently stationary. Because
such cases correspond to the emission of undamped sound
and entropy-vortex waves from the compressed gas side of
the shock, this was termed “acoustic emission instability,”
although no true instability—in the conventional, tempo-
rally exponentiating sense of the word—occurs. Once cre-
ated, perturbations on the shock front persist indefinitely
and continue to radiate waves without being either damped
or amplified.

In the analysis of shock wave stability, a crucial role is
played by the Hugoniot curve [7] in the plane of specific
volume V versus pressure p. This curve is the locus of all
shocked or “downstream” states that can be connected by
a single surface of discontinuity to a particular unshocked
or “upstream” state. For an ideal gas, the Hugoniot curve
has a smoothly varying, “regular” appearance, but for other
materials, bumps, discontinuities, or changes in curvature
are sometimes found. It is these “irregular” segments that
can give rise to a variety of unusual dynamical features,
including the formation of rarefactive shocks [8], and the
splitting of shock fronts into more complex (but stable)
wave structures [9].

For the D’yakov-Kontorovich instability to occur, it is
not necessary for a Hugoniot curve to have any irregular
features, only that its slope over some segment lies below
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a critical value. The criterion for this class of shock insta-
bilities is most conveniently expressed in the form of an
inequality involving the so-called “D’yakov parameter”

h � j2

µ
dV
dp

∂
H

, (1)

where j2 � � p2 2 p1���V1 2 V2� is the square of the
mass flux density across the shock, and upstream and
downstream states bear the subscripts “1” and “2,” respec-
tively. The derivative in Eq. (1) is taken along the Hugo-
niot curve and evaluated at the downstream state. The
condition for instability to arise can be stated as [6,10]

hc �
1 2 M2

2 �1 1 V1�V2�
1 2 M2

2 �1 2 V1�V2�
, h . (2)

Here, M � jy�cj is a Mach number, where y � jV and
c are the fluid velocity and sound speed, respectively, in
the frame of reference in which the shock is stationary. In
an ideal gas, hc � �1 2 2M2

1 �21 and h � 21�M2
1 , and so

the above inequality can never be satisfied for M1 $ 1.
The inequality can be satisfied, though, for other ma-

terials possessing nonideal equations of state. Recently,
Bates and Montgomery [11] showed that for a dissociation
model of diatomic hydrogen at ICF-relevant conditions, a
critical shock strength exists beyond which hc , h holds.
Furthermore, Rutkevich, Zaretsky, and Mond have demon-
strated that an emission instability is likely to occur for
strong shocks in certain metals [12], as well as in inert
gases undergoing ionization [13].

Despite these predictions, the existence of an emission
instability has never been confirmed in a dynamical com-
putation. In this Letter, we present the first numerical ev-
idence for the D’yakov-Kontorovich instability of a plane
shock wave. Using a van der Waals equation of state as
a paradigm for nonideal fluid behavior, we first show that
real gases in the vicinity of a vapor-liquid phase transition
© 2000 The American Physical Society
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can be susceptible to this type of instability. Then, the pas-
sage of a shock through a slightly narrowing two-dimen-
sional channel filled with a uniform van der Waals gas at
rest is modeled in a numerical simulation. (Physically, we
imagine the shock as sustained by the motion of a piston
far behind it.) The small constriction in the channel’s cross
section excites transverse perturbations to the one-dimen-
sional flow [14], which in this case ultimately leads to the
emission of undamped sound waves from the shock front;
see Fig. 1. In agreement with the predictions of the lin-
earized normal-mode analysis, the sound emanating from
the shock appears in the simulation as pairs of plane acous-
tic waves, whose propagation vectors are discrete and di-
rected upstream. (Transport due to the moving downstream
fluid is what permits these waves to leave the shock’s
surface.) The numerical method employed is a two-di-
mensional “flux corrected transport” (FCT) algorithm [15],
which ignores the effects of viscosity and thermal conduc-
tivity, and solves the Euler equations of compressible gas
dynamics in a fixed coordinate system. FCT-based codes
have been shown [16] to model accurately the passage of
steep shocks through fluids without introducing spurious
oscillations, but have the desirable property of not preclud-
ing the appearance of local extrema in the flow when they
occur physically.

The equation of state for a van der Waals gas is
� p 1 a�V 2� �V 2 b� � NkT , where N is the number of
molecules per unit mass, k is Boltzmann’s constant, T is
the temperature, and a and b are constants. The van der
Waals equation is a more accurate description of real fluid
behavior than the ideal gas law, and is appropriate to use
whenever the interactions between particles, a�V 2, and
their finite volumes, b, become important. This equation
can be cast in dimensionless form as∑

p�p0 1
3

�V�V0�2

∏
�3 V�V0 2 1� � 8 T�T0 , (3)

where p0 � a��27b2�, V0 � 3b, and T0 � 8ma��27Rb�
are convenient reference values. Here, R � mNk is the
universal gas constant and m is the gas molecular weight.
In addition to Eq. (3), it is also necessary to have expres-
sions for the entropy, s, and the specific internal energy
per unit mass, ´. Ignoring unimportant additive constants,
these are given by

s�s0 � log�T�T0� 1
R

mcV
log�3 V�V0 2 1� , (4)

´�´0 �
mcV

R
�T�T0� 2

9
8 �V�V0�

, (5)

where s0 � cV , ´0 � RT0�m, and cV � const is the spe-
cific heat per unit mass at constant volume. Equations (3)
and (4) can be used to compute the speed of sound from
the relation c2 � 2V 2 �≠p�≠V �s, which is needed in the
evaluation of hc in Eq. (2).

Using the above expressions in conjunction with the
Rankine-Hugoniot relations [7,17], it is straightforward to
impenetrable walls
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FIG. 1. The passage of a shock through a van der Waals gas
in a channel with a slight constriction is modeled. The size of
the constriction is exaggerated here for clarity.

compute Hugoniot curves for a van der Waals gas, an ex-
ample of which is shown in Fig. 2. Note that the Hugoniot
lies entirely outside of both the (liquid-vapor) coexistence
region, and the so-called “anomalous” region [11,17,18]
in which �≠2p�≠V 2�s , 0. Figure 3 shows the differ-
ence hc 2 h versus upstream Mach number M1 along the
Hugoniot in Fig. 2. It is apparent that a region exists just
beyond M1 � 1.2 where hc 2 h , 0, and the criterion
for instability is satisfied. Accordingly, we choose M1 �
1.245, which corresponds to the downstream state labeled
“2” in Fig. 2. The value of h at this point is 20.542,
and the entropy change from point “1” is 10.037%. The
downstream Mach number here is M2 � 0.745, so that the
conditions for the unperturbed flow to be evolutionary [7]
are met.

Let us investigate the response of this shock to small
disturbances. Before presenting the results of our numeri-
cal simulation, we first review the theory of perturbed
shocks for general equations of state. This analysis usu-
ally proceeds from a linearized normal-mode approach, as
discussed in Ref. [7]. Following that discussion, we trans-
form to a coordinate frame in which the shock is at rest
and aligned with the y axis at x � 0. Contrary to the con-
vention of Ref. [7], though, our unperturbed flow is from
right to left so that y1, y2 , 0.
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FIG. 2. Hugoniot for a van der Waals gas with mcV �R � 30
(not an uncommon value). Initial and final states are �V1, p1� �
�3 V0, 0.66 p0� and �V2, p2� � �V0, 1.165 p0�, respectively.
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FIG. 3. Plot of the difference hc 2 h versus M1 for the Hugo-
niot in Fig. 2.

We now give the planar shock front a corrugation of the
form exp�i �ky y 2 v t��, where ky and v are a transverse
wave number and eigenfrequency, respectively, and t is
the time. This perturbation affects the downstream flow
(x , 0) only, where, in general, both entropy-vortex and
sound waves are produced. Each type of linear wave is
represented by a factor exp�i �kx x 1 ky y 2 v t��, with
the same values of ky and v as the original disturbance, but
differing by the value of their longitudinal wave number
kx . In the entropy-vortex wave, which has no pressure
variation, kx is simply given by v�y2, expressing the fact
that small disturbances of this type are swept along with
the downstream flow. For the sound wave, though, kx is
determined from

v2
0 � �v 2 y2kx�2 � c2

2

≥
k2

x 1 k2
y

¥
, (6)

where v0 is the sound frequency in a coordinate frame
moving with the downstream fluid. Equation (6) can be
solved to give kx as a function of v and ky . In general, kx

and v are complex-valued quantities, whereas ky is real.
(Of course, if ky is present in the Fourier decomposition,
so must be 2ky .)

The next step is to determine all possible eigenmodes
of oscillation for the system. By linearizing the perturbed
Euler equations and Rankine-Hugoniot jump conditions at
the shock’s surface, a dispersion relation for v can be
derived. We refer the reader to Refs. [7] and [19] for
details. The result is

2 v y2

y1

µ
k2

y 1
v2

y
2
2

∂
2

µ
v2

y1y2
1 k2

y

∂
�v 2 y2kx� �1 1 h� � 0 , (7)

where kx is the acoustic wave number appearing in Eq. (6).
Roots of Eq. (7) with purely real values of v and kx

correspond to the emission of undamped waves from the
shock (i.e., the D’yakov-Kontorovich “instability”). This
1182
equation can be cast in a more useful form by introduc-
ing the angle u between the sound propagation vector
�kx , ky� and the positive x axis. With the transformation
c2kx � v0 cosu and c2ky � v0 sinu, Eq. (6) can be writ-
ten as v � v0�1 1 M2 cosu�. Then, substituting these
three expressions into Eq. (7) yields

A cos2u 2 B cosu 1 C � 0 , (8)

where

A � M2
2

µ
4

1 1 h
1

V1

V2
2 1

∂
,

B � 2M2

µ
3 1 M2

2

1 1 h
2 1

∂
,

C �
2�1 1 M2

2 �
1 1 h

2

µ
1 1 M2

2
V1

V2

∂
.

For our parameters, we find that the two roots of Eq. (8)
are cosu � 0.996 and 0.696. These values specify a longi-
tudinal component of the sound propagation direction, but
not a transverse one, which could have either sign since
sinu � 6

p
1 2 cos2u. In other words, each root is asso-

ciated with two waves running in opposite directions along
the y axis.

In order for a sound wave to leave the shock’s surface,
though, it must have an overall propagation velocity in
the negative x direction such that y2 1 c2 cosu , 0. Said
another way, the emission of undamped sound waves can
occur if 21 , cosu , M2, a condition that is satisfied
for cosu � 0.696 only. This root corresponds to a case
in which the emission is in the upstream direction, but
transport due to the moving gas makes it still a wave that
leaves the surface of discontinuity. (For a discussion of
the distinction between the direction of the propagation
vector and the direction of energy flow, see Whitham [20].)
Thus, in the event of a D’yakov-Kontorovich instability
of the van der Waals shock depicted in Fig. 2, we should
expect to see pairs of plane acoustic waves emanating
from the downstream side of the shock at approximately
6 cos21�0.696� � 646± about the x axis.

And that is indeed what appears in the numerical simu-
lation. Figure 4(a) shows a gray scale plot of pressure at
t�t0 � 1001 for a shock that has traveled down the “nu-
merical shock tube” sketched in Fig. 1, and is now far to
the right of the constriction. Here, t0 is a reference time
defined by

p
´0 � L�t0, where L is an arbitrary reference

length. In this figure, two crossed sets of plane acous-
tic waves leaving the downstream face of the shock are
clearly visible, as is the persistence of a perturbation to the
planarity of the shock’s surface. The effect is somewhat
reminiscent of the sound generated by supersonic flow past
a corrugated wall [21], but in that case only plane waves
at a single angle of emission are produced. Our simula-
tion was initiated at t�t0 � 0 by first establishing a steady
planar shock at x�L � 20 with upstream and downstream
equilibrium values of pressure, specific volume, and x
component of velocity chosen to correspond to the states
labeled “1” and “2,” respectively, in Fig. 2. The planarity
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FIG. 4. Pressure near the shock front in (a) an unstable van
der Waals gas and (b) a stable ideal gas. The waves visible
behind the shock in (a) are linear sound waves with rms pressure
fluctuations of about 1.5%; fluctuations in (b) are an order of
magnitude smaller. In additional runs performed for a van der
Waals gas with h , hc (stable case), the emission phenomenon
was not observed.

of this shock was then disturbed upon passage through the
slight constriction in the shock tube’s cross section, which
had a width of one cell and was located at x�L � 32.
The entire computational grid was 1024 3 64 cells with
Dx�L � Dy�L � 1. The walls of the shock tube were
modeled as ideal solid boundaries where “free-slip” con-
ditions apply, while inflow and outflow conditions were
imposed at the left and right ends, respectively, of the com-
putational domain. The maximum dimensionless time step
allowed here was Dt�t0 � 0.005.

For comparison, Fig. 4(b) shows a run at t�t0 � 409
using a monatomic ideal-gas equation of state. This shock
has the same Mach number and upstream values of specific
volume and pressure as that in Fig. 4(a), but now the roots
of Eq. (8) do not satisfy 21 , cosu , M2. Consequently,
sound waves cannot escape from the downstream surface
of the discontinuity and the system is not susceptible to
the D’yakov-Kontorovich instability. This result was to
be expected since planar shocks in ideal gases are known
[22] to be inherently stable, and to ultimately regain their
uniform shape when subject to small disturbances.

In summary, we have observed in a gas-dynamical com-
putation that sound waves can be emitted from the surface
of a shock when the criterion for spontaneous emission is
satisfied. This result agrees with predictions made over
40 years ago [5,6]. Although the molecular processes ul-
timately responsible for this special class of shock wave
instabilities have never been entirely amenable to theoreti-
cal explanation, they are likely related to the thermody-
namic proximity of regions characterized by increasingly
easier adiabatic compression, and the relative ease of excit-
ing sound waves in those regimes. In the future, it would
be desirable to investigate these underlying microscopic
phenomena by utilizing a numerical scheme capable of re-
solving the kinetic structure of the shock front.
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