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Velocity Dependence of Atomic Friction
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Sliding friction between the tip of a friction force microscope and NaCl(100) was studied to deduce
the velocity dependence of friction forces on the atomic scale. A logarithmic dependence of the mean
friction force is revealed at low velocities. The experimental data are interpreted in terms of a modified
Tomlinson model which is based on reaction rate theory.

PACS numbers: 46.55.+d, 07.79.Lh, 07.79.Sp, 81.40.Pq
The fundamental laws of friction were stated a few
centuries ago by da Vinci, Amonton, and Coulomb, who
found that (i) friction is independent of the apparent area of
contact, (ii) friction is proportional to the applied load, and
(iii) kinetic friction is independent of the velocity [1].
These laws, commonly verified on the macroscopic scale,
result from the collective behavior of many microscopic
asperities which continuously stick and detach during
sliding [2].

With the introduction of the friction force microscope
(FFM) in 1987 [3] it became possible to produce a single
asperity contact and study friction on the atomic scale. In
a FFM, a flat surface is scanned by a sharp tip at a constant
normal force or height; the lateral (or friction) force is de-
tected by optical techniques which measure the torsional
bending of the cantilever which the tip is mounted on. By
FFM measurements it was revealed that friction laws for
a single asperity are different from macroscopic friction
laws. The main result, confirmed by several experiments
[3–5], is that the friction force on the nanometer scale ex-
hibits a sawtooth behavior, commonly known as atomic
stick slip. This phenomenon can be theoretically repro-
duced within classical mechanical models [6–8].

Very little is known about the velocity dependence of
friction on such scales. Recently, FFM experiments per-
formed in controlled atmosphere on a 1 3 1 mm2 scale
have been reported. Zwörner et al. found that the fric-
tion forces between silicon tips and different carbon com-
pounds are constant over a wide range of velocities [9].
Bouhacina et al. [10] report a logarithmic increase in fric-
tion with velocity between a tip and polymers grafted on
silica surfaces. Mechanical models which do not con-
sider the role of finite temperature reveal no significant
dependence on velocity [11]. To explain the latter result,
Bouhacina et al. related the average friction force on the
mm scale to a thermally activated stick-slip behavior on
the atomic scale.

In this Letter, we present the first measurements of the
velocity dependence of atomic-scale friction. The experi-
ments were performed with a silicon tip on a NaCl(100)
surface, using a homebuilt UHV-FFM [12] of beam de-
flection type [13]. The microscope was operated in a UHV
chamber, where a pressure below 10210 mbar was main-
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tained during the experiment. The samples were cleaved
in situ and heated to 120 ±C for two hours to remove charg-
ing produced in the cleavage process. Friction measure-
ments were performed at room temperature.

The normal and lateral forces acting on the tip, FN and
FL, were deduced from measurements of the deflections
of rectangular silicon cantilevers. The normal and tor-
sional spring constants of each cantilever, cn and ct , were
calculated from its geometry, permitting a calibration of
the forces FN and FL [1]. The length and the width of
each cantilever was evaluated using scanning electron mi-
croscopy (SEM) micrographs; the height of the tip was
also determined by SEM, and the thickness of the can-
tilever was obtained from its resonance frequency [14].

The measurements presented here were performed using
a cantilever with low spring constants, cn � 0.12 N�m
and ct � 66.7 N�m. We also performed measurements
using cantilevers with larger spring constants, but in this
case no atomic features were observed. During the scan-
ning process, the external load FN was kept constant at
FN � 0.44 nN or FN � 0.65 nN using a feedback loop.
The integral and the proportional gain of the feedback loop
were set to low values, as it is known that high values can
have a dramatic influence on the measured lateral force
[15]. Zero normal force is defined as the position where
the cantilever is not bent.

Friction measurements were performed on the same re-
gion of the sample with different scanning velocities y be-
tween 5 nm�s and 1 mm�s. No changes in topography
were revealed after several scans. In Fig. 1(a) a lateral
force map of a 5 3 5 nm2 area, acquired by scanning at
y � 25 nm�s, is shown. The lateral stiffness of the con-
tact, kc, was determined to be kc � 0.86 N�m from the
slope of the sticking part of the friction loop [Fig. 1(b)]
[1]. The diameter of the contact between the tip and the
sample was estimated from kc to be on the order of one
ionic radius [16,17]. This small contact diameter suggests
that this method, based on continuum mechanics, is at
the limit of its validity. However, the value indicates that
the contact consists of only a few atoms, possibly only
one atom.

The lateral force, FL, was computed from the mean
absolute value of the lateral force maps, �FL�, and from
© 2000 The American Physical Society
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FIG. 1. (a) Lateral force map of NaCl(100) at FN � 0.65 nN
and y � 25 nm�s. (b) Friction loop formed by two scan lines
measured forward and backward, respectively.

the mean absolute value of the peaks in the friction loops,
�FL,max�. In both cases, it was found that the lateral force,
FL, depends logarithmically on the velocity y (Fig. 2):

FL � FL0 1 FL1 ln
y

y1
, (1)

where y1 is taken to be 1 nm�s for simplicity. The values
of FL1 calculated from �FL� and �FL,max� nearly coincide
for each load; thus �FL,max� has the same dependence on
velocity as �FL�. This finding is confirmed by the fact
that the effective lateral spring constant keff, given by the
slope of the sawtooth in the friction loop, does not change
significantly with velocity.

The results can be interpreted within a modified Tom-
linson model [6,18,19], taking into account the effects of
thermal activation. The friction force microscope can be
described by the potential

Vtot � V �xT � 1
keff

2
�xT 2 xS�2, (2)

where xT and xS are the position of the tip and the support
of the microscope, respectively. The first term describes
the potential acting on the tip due to the interaction with the
sample; the second term describes the elastic energy stored
in the cantilever. The adiabatic potential of the tip for a
FIG. 2. Friction as a function of the scanning velocity at
FN � 0.44 nN (circles) and FN � 0.65 nN (squares) loads.
Open and solid symbols refer to �FL� and �FL,max�, respec-
tively. The following parameters (see text) have been extracted
from the data: FL0 � 0.156 nN, FL1 � 0.017 nN (open circle);
FL0 � 0.250 nN, FL1 � 0.016 nN (solid circle); FL0 �
0.198 nN, FL1 � 0.030 nN (open square); FL0 � 0.315 nN,
FL1 � 0.029 nN (solid square).

fixed support position xS consists of a multiwell potential
as reproduced in Fig. 3. For this figure V �xT � was assumed
to be a cosine function with periodicity a � 0.4 nm and
a peak-to-peak amplitude E0 reflecting the energy barrier
between two adjacent atomic positions.

At zero temperature an irreversible jump of the tip oc-
curs when the equilibrium of the tip becomes unstable.
This takes place if the potential barrier DE1 vanishes. The
corresponding support position xS is referred to as the criti-
cal point. The lateral force needed to induce a jump at
T � 0 will be denoted F�

L. We study the case of tem-
peratures, where the energy barrier becomes comparable
to kBT only for support positions near the critical point. In
this case we can restrict ourselves to a potential containing
only two minima, named A and B, the energy minimum B

FIG. 3. Potential Vtot used for the Tomlinson model including
thermal activation. The parameters have been chosen to illustrate
a situation with a high probability for a jump from A to B.
The values for keff and xS are taken from the experimental
results presented in Fig. 1. The tip-sample interaction V �xT �
was modeled by a cosine function with periodicity a � 0.4 nm
and a peak-to-peak amplitude of E0 � 0.33 eV.
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being significantly lower than A. The probability to find
the tip in valley A or B is given by the probability p and
1 2 p, respectively.

The change of probability is given by the reaction rates
describing the flow of probability from A to B and vice
versa. We assume that initially the tip is located in valley
A. As valley B is much lower than A and the energy barrier
DE2 is much larger than DE1, we can neglect flow from
B to A. The master equation takes the simple form

dp�t�
dt

� 2f0 exp

√
2

DE1�t�
kBT

!
p�t� , (3)

where DE1�t� is the activation energy as a function of
time and f0 is the characteristic frequency of the double
well system. As we are interested in the lateral force
corresponding to the maximum jump probability, we make
a change of variable replacing time by the corresponding
lateral force. The master equation becomes

dp�FL�
dFL

� 2f0 exp

√
2

DE1�FL�
kBT

! √
dFL

dt

!
21

p�FL� .

(4)

At this point two assumptions can be made. As a first
approximation, we assume that

dFL

dt
�

dFL

dx
dx
dt

� keffy . (5)

Note that x does not describe the tip position but the sup-
port position, recorded during the measurements. This as-
sumption is justified by the linear shape of the sticking part
of the lateral force scans.

As a second assumption we assume that the energy bar-
rier vanishes linearly near the critical points with the in-
creasing lateral force FL [20]. We thus obtain the relation

DE1�FL� � l�F�
L 2 FL� . (6)

We will see that the parameter l determines the velocity
dependence of lateral force. For FL � 0 the potential bar-
rier DE1 is equal to the energy barrier E0 and, therefore,
l should be of the order of E0��FL,max�.

After substituting (5) and (6) into (4), the maximum
probability transition condition

d2p�FL�
dF2

L
� 0 (7)

yields

FL�y� � F�
L 1

kBT
l

ln
ykeffl

f0kBT
� FL0 1

kBT
l

ln
y

y1
.

(8)

Thus, at a fixed temperature, the lateral force depends
logarithmically on the sliding velocity, as experimentally
observed. This also holds true for mean lateral force since
both are separated by a constant difference keffa�2. The
parameter l is given by

l �
kBT
FL1

. (9)
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From the experimental data, we obtain l � 1.56 eV�nN
for FN � 0.44 nN and l � 0.88 eV�nN for FN � 0.65 nN.
In Fig. 3, the potential at a moment of high probability
for a slip event is depicted, i.e., when DE1 � kBT . The
corresponding data for xS and keff are taken from the
experimental results plotted in Fig. 1. By assuming a
simple cosine potential for V �xT � a barrier height of E0 �
0.33 eV between two adjacent atomic positions can be es-
timated. Thus, the above criterion for the magnitude of
l is satisfied. The energy barrier seems reasonable for a
contact consisting of very few atoms. For the experiment
at FN � 0.44 nN the reduced contact stiffness of keff �
0.55 N�m and the lower mean lateral force result in a bar-
rier height of E0 � 0.25 eV. The lowering of the barrier
height emphasizes the role of the tip load for the dynamics
of the atoms in contact. The parameter l, and with it the
velocity dependence of atomic friction, shows a stronger
dependence on the load than keff or E0. Rembering that l

describes how fast the energy barrier to the next slip event
vanishes with increasing lateral force, we conclude that l

depends on the shape of the potential V �xT � which itself
may change significantly with load and, of course, with
the structure of the contact.

In conclusion, we showed that atomic friction increases
logarithmically with the sliding speed. The velocity de-
pendence is due to thermal activation of the irreversible
jumps leading to the well known hysteretic behavior of lat-
eral forces. We described the atomic friction mechanism
within a one-dimensional Tomlinson model, using reaction
rate theory.
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