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Information-Theoretic Limits of Control
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Fundamental limits on the controllability of physical systems are discussed in the light of information
theory. It is shown that the second law of thermodynamics, when generalized to include information,
sets absolute limits to the minimum amount of dissipation required by open-loop control. In addition,
an information-theoretic analysis of control systems shows feedback control to be a zero sum game:
each bit of information gathered from a dynamical system by a control device can serve to decrease the
entropy of that system by at most one bit additional to the reduction of entropy attainable without such
information. Consequences for the control of discrete state systems and chaotic maps are discussed.
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Information and uncertainty represent complementary
aspects of control. Open-loop control methods attempt to
reduce our uncertainty about system variables such as po-
sition or velocity, thereby increasing our information about
the actual values of those variables. Closed-loop methods
obtain information about system variables and use that in-
formation to decrease our uncertainty about the values of
those variables. Although the literature in control theory
implicitly recognizes the importance of information in the
control process, information is rarely regarded as the cen-
tral quantity of interest [1]. In this Letter we address ex-
plicitly the role of information and uncertainty in control
processes by presenting a novel formalism for analyzing
these quantities using techniques of statistical mechanics
and information theory. Specifically, based on a recent
proposal by Lloyd and Slotine [2], we formulate a gen-
eral model of control and investigate it using entropylike
quantities. This allows us to make mathematically precise
each part of the intuitive statement that in a control pro-
cess information must constantly be acquired, processed,
and used to constrain or maintain the trajectory of a system.
Along this line, we prove several limiting results relating
the ability of a control device to reduce the entropy of an
arbitrary system in the cases where (i) such a controller
acts independently of the state of the system (open-loop
control) and (ii) the control action is influenced by some
information gathered from the system (closed-loop con-
trol). These results not only combine concepts of dynam-
ical entropy and information in a unified picture, but also
prove to be fundamental in that they represent the ultimate
physical limitations faced by any control systems.

The basic framework of our present study is the follow-
ing. We assign to the physical plant X that we want to
control a random variable X representing its state vector
(of arbitrary dimension) and whose value x is drawn ac-
cording to a probability distribution p�x�. Physically, this
probabilistic or ensemble picture may account for interac-
tions with an unknown environment, noisy inputs, or un-
modeled dynamics; it can also be related to a deterministic
sensitivity to some parameters which make the system ef-
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fectively stochastic. The recourse to a statistical approach
then allows the treatment of both the unexpectedness of the
control conditions and the dynamical stochastic features as
two faces of a single notion: uncertainty.

As is well known, a suitable measure quantifying un-
certainty is entropy [3,4]. For a classical system with a
discrete set of states with probability mass function p�x�,
it is expressed as

H�X� � 2
X
x

p�x� logp�x� (1)

(all logarithms are assumed to the base 2 and the en-
tropy is measured in bits). Similar expressions also exist
for continuous state systems (fine-grained entropy), quan-
tum systems (von Neumann entropy), and coarse-grained
systems obtained by discretization of continuous densi-
ties in the phase space [5]. In all cases, entropy offers
a precise measure of disorderliness or missing informa-
tion by characterizing the minimum amount of resources
(bits) required to encode unambiguously the ensemble
describing the system [4–6]. As for the time evolu-
tion of these entropies, we know that the fine-grained (or
von Neumann) entropy remains constant under volume-
preserving (unitary) evolution, a property closely related
to the fact that only one-to-one mappings of states, i.e.,
reversible transformations preserving information, are ex-
empt of dissipation [7]. Coarse-grained entropies, on the
other hand, usually increase in time even in the absence
of noise due to the finite nature of the partition used in
the coarse graining which, in effect, induces a “randomi-
zation” of the motion [8].

In this context, we now address the problem of how a
control device can be used to reduce the entropy of a sys-
tem or to immunize it from sources of entropy, in par-
ticular, those associated with noise, motion instabilities,
incomplete specification of states, and initial conditions.
Although the problem of controlling a system requires
more than limiting its entropy, the ability to limit entropy
is a prerequisite to control. Indeed, the fact that a control
© 2000 The American Physical Society
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process is able to localize a system in definite stable states
or trajectories simply means that the system can be con-
strained to evolve into states of low entropy.

To illustrate, in its most simple way, how the entropy of
a system can be affected by external systems, let us con-
sider a basic model consisting of a system X coupled to an
environment E . For simplicity, we assume that the states
of X form a discrete set evolving over discrete time inter-
vals Dt [9]. The initial state is again distributed according
to p�x�, and the effect of the environment is taken into ac-
count by introducing a perturbed conditional distribution
p�x0 j e�, where x0 is a value of the state later in time and
e, a particular realization of the stochastic perturbation ap-
pearing with probability p�e�. For each value e, we assume
that X undergoes a unique evolution, referred to here as a
subdynamics, taken to be entropy conserving in analog to
the Hamiltonian time evolution for a continuous physical
system:

H�X 0 j e� � 2
X
x0

p�x0 j e� logp�x0 j e� � H�X� . (2)

After the time transition X ! X 0, the distribution p�x0�
is obtained by tracing out the variables of the environment
and is used to calculate the change of the entropy H�X 0� �
H�X� 1 DH. From the concavity property of entropy, it
can be easily shown that DH $ 0, with equality if and
only if (iff) the state E is perfectly specified, i.e., if a value
e appears with probability one. In practice, however, the
environment degrees of freedom are uncontrollable and the
uncertainty associated with the environment coupling can
be suppressed by “updating” our knowledge of X after the
evolution.

One direct way to reveal that state is to imagine a
measurement apparatus A coupled to X in such a way
that the dynamics of the composed system X 1 E
is left unaffected. For this measurement scheme, the
outcome of some discrete random variable A of the
apparatus is described by a conditional probability ma-
trix p�a j x0� and the marginal p�a� from which we
can derive H�X 0 jA� # H�X 0� with equality iff A is
independent of X [4]. In this last inequality we have
used H�X 0 jA� �

P
a H�X 0 j a�p�a�, and H�X 0 j a� given

similarly as in Eq. (2). Now, upon the application of the
measurement, one can define the reduction of entropy
of the system conditionally on the outcome of A by
DHA � H�X 0 jA� 2 H�X�, which, obviously, satisfies
DHA # DH, and H�A� $ DH 2 DHA. In other words,
the decrease in the entropy of X conditioned on the
state of A is compensated for by the increase in entropy
of A. This latter quantity represents information that
A possesses about X . Accordingly, the entropy of X
given A plus the entropy of A is nondecreasing, which is
an expression of the second law of thermodynamics as
applied to interacting systems [10–12].

It must be stressed that the reduction of entropy of X
discussed so far is conditional on the outcome of A. By
assumption, X is not affected by A; as a result, accord-
ing to an observer who does not know this outcome, the
entropy of X is unchanged. In order to reduce entropy
for all observers unconditioned on the state of any external
systems, a direct dynamical action on X must be estab-
lished externally by a controller C whose influence on the
system is represented by a set of control actions x

c
! x0

triggered by the controller’s state c. Mathematically, these
actions can be modeled by a probability transition matrix
p�x0 j x, c� giving the probability that the system in state
x goes to state x0 given that the controller is in state c.
The specific form of this actuation matrix depends on the
subdynamics envisaged in the control process: some ac-
tions, for example, may correspond to dissipative (volume
contracting) control strategies forcing several initial con-
ditions to a common state, while others can model uncon-
trolled transitions perturbed by noise leading to entropy
increasing actuation rules. Hence, the systems X and C
need not in general model a closed Hamiltonian system;
X , as we already noted, can be an open system, i.e., one
affected by external systems (e.g., environment) on which
one has usually no control. Formally speaking, though,
one can always embed any open-system evolution in a
higher dimensional closed system whose dynamics mim-
ics a Hamiltonian system. This can be done by supple-
menting an open system with a set of ancillary variables
acting as an environment E in order to construct a global
volume-preserving transition matrix such that, when the
ancillary variables are traced out, the reduced transition
matrix thus obtained reproduces the dynamics of the sys-
tem X 1 C .

Note that these ancillary variables need not have any
physical significance: they are only there for the purpose of
simplifying the analysis of the evolution of the system. In
particular, any control strategy must be independent of the
choice of E which means, within our model, that the con-
trol of the system X can be assured only by the choice of
the control variable C whereby we can force an ensemble
of transitions leading the system to a net entropy change
DH. Since the overall dynamics of the system, controller,
and environment is Hamiltonian, Landauer’s principle im-
mediately implies that if the controller is initially uncorre-
lated with the system, so that p�x, c� � p�x�p�c� for all x
and c as in the case with open-loop control, a decrease in
entropy DH for the system must be compensated for by an
increase in entropy of at least DH for the controller and the
environment [12]. Furthermore, using again the concavity
property of H, it can be shown that the maximum decrease
of entropy achieved by a particular subdynamics of control
variable ĉ is always optimal in the sense that no probabilis-
tic choice of the control parameter can improve upon that
decrease. Explicitly, we have the following theorem (we
omit the proof which follows simply from the concavity
property).

Theorem 1.—For open-loop control, the maximum
value of DHopen � H�X� 2 H�X 0� can always be attained
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for a deterministic choice of the control variable, i.e.,
with p�ĉ� � 1 and p�c� � 0 for all c fi ĉ, where ĉ is
the value of the controller leading to maxDHopen. Any
nondeterministic choice of the control variables either
achieves the maximum or yields a smaller value.

From the standpoint of the controller, one major draw-
back of acting independently of the state of the system is
that no information other than that available from the state
of X itself can provide a reasonable way to determine
which subdynamics are optimal or accessible given the
initial state. For this reason, open-loop control strategies
usually fail to operate efficiently in the presence of noise
because of their inability to react or be adjusted in time. In
order to account for all the possible behaviors of a stochas-
tic dynamical system, we have to use the information con-
tained in its evolution by considering a closed-loop control
scheme in which the state of the controller is allowed to be
correlated to the initial state of X . This correlation can be
thought of as a measurement process described earlier that
enables C to gather an amount of information given for-
mally in Shannon’s information theory [3,4] by the mutual
information I�X; C� � H�X� 1 H�C� 2 H�X, C�, where
H�X, C� � 2

P
x,c p�x, c� logp�x, c� is the joint entropy

of X and C. Having defined these quantities, we are
now in a position to state our main result which is that
the maximum improvement that closed-loop can give over
open-loop control is limited by the information obtained
by the controller. More formally, we have the following
theorem.

Theorem 2.—The amount of entropy DHclosed that can
be extracted from any dynamical system by a closed-loop
controller satisfies

DHclosed # DHopen 1 I�X; C� , (3)

where DHopen is the maximum entropy decrease that can
be obtained by open-loop control and I�X; C� is the mutual
information gathered by the controller upon observation of
the system state.

Proof.—We construct a closed system by supple-
menting an ancilla E to our previous system X 1 C .
Moreover, let C and E be collectively denoted by
B with state variable B. Since the complete system
X 1 B is closed, its entropy has to be conserved,
and thus H�X, B� � H�X 0, B0�. Defining the entropy
changes of X and B by DHX � H�X� 2 H�X 0� and
DHB � H�B0� 2 H�B�, respectively, and by using
the definition of the mutual information, this condi-
tion of entropy conservation can also be rewritten in
the form DHX � DHB 2 I�X 0; B0� 1 I�X; B� [12].
Now, let DHopen be the maximum amount of en-
tropy decrease of X obtained in the open-loop case
where I�X; C� � I�X; B� � 0 [by construction of E ,
I�X; E� � 0]. From the conservation condition, we hence
obtain maxDHX � DHopen 1 I�X; B�, which is the
desired upper bound for a feedback controller. �
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The above results can be generalized to continuous state
systems by using the definitions of entropy and mutual
information involving integrals instead of sums over the
states, as mentioned in the note [9]. In the continuous state
version of theorem 2, it is worth noting that I�X; C� is well
defined and non-negative even when X and C are both
continuous variables or when one is continuous and the
other discrete. Also, in the limit Dt ! 0, Eq. (3) becomes
a rate equation limiting the improvement obtainable by the
addition of continuous feedback control.

To illustrate the two theorems, suppose that we control
a system in a mixture of the states �0, 1� using a controller
restricted to use the following two actions:

Ω
c � 0: x ! x0 � x ,
c � 1: x ! x0 � NOT x

(4)

(in other words, the controller and the system behave like
a so-called “controlled-NOT” gate). Since these actuation
rules simply permute the state of X , H�X 0� $ H�X� with
equality if we use a deterministic control strategy or if
H�X� � Hmax � 1 bit, in agreement with our first theo-
rem. Thus, DHopen � 0. However, by knowing the actual
value of x [H�X� bit of information] we can choose C
to obtain DHX � H�X�, therefore achieving Eq. (3) with
equality. Evidently, as implied by this equation, informa-
tion is required here as a result of the nondissipative na-
ture of the actuations and would not be needed if we were
allowed to use dissipative subdynamics. Conversely, no
open-loop controlled situation is possible if we confine the
controller to use entropy-increasing actuations as, for in-
stance, in the control of nonlinear systems using chaotic
dynamics.

In order to demonstrate this last statement, let us con-
sider the feedback control scheme proposed by Ott, Gre-
bogi, and Yorke (OGY) [13] as applied to the logistic map,

xn11 � rxn�1 2 xn�, x [ �0, 1� (5)

(the extension to more general systems naturally follows).
The OGY method, specifically, consists of applying to
Eq. (5) small perturbations r ! r 1 drn according to
drn � 2g�xn 2 x��, whenever xn falls into a region D
in the vicinity of the target point x�. The gain g . 0
is chosen so as to ensure stability [14]. For the purpose
of chaotic control, all the accessible control actions
determined by the values of drn, and thereby by the
coordinates xn [ D, can be constrained to be entropy
increasing for a proper choice of D, meaning that the
Lyapunov exponent l�r� associated with any actuation
indexed by r is such that l�r� . 0 [15]. Physically,
this implies that almost any initial uniform distribution
for X covering an interval of size ´ “expands” by a
factor 2l�r� on average after one iteration of the map with
parameter r [16–18]. Now, for an open-loop controller,
it can readily be shown in that case that no control of
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the state x is possible; without knowing the position xn,
a controller merely acts as a perturbation to the system,
and the optimal control strategy then consists of using the
smallest Lyapunov exponent available so as to achieve
DHopen � 2lmin , 0. Following theorem 2, it is thus
necessary, in order to achieve a controlled situation
DHX $ 0, to have I�X; C� $ lmin using a measurement
channel characterized by an information capacity [4] of
at least lmin bit per use.

In the controlled regime (n ! `), this means specifi-
cally that, if we want to localize the trajectory generated
by Eq. (5) uniformly within an interval of size ´ using a set
of chaotic actuations, we need to measure x within an in-
terval no larger than ´22lmin . To understand this, note that
an optimal measurement of I�X; C� � loga bits consists,
for a uniform distribution p�x� of size ´, of partitioning
the interval ´ into a subintervals of size ´�a. The con-
troller under the partition then applies the same actuation
r �i� for all the coordinates of the initial density lying in
each of the subintervals i, therefore stretching them by a
factor of 2l�r �i��. In the optimal case, all the subintervals
are directed toward x� using lmin and the corresponding
entropy change is thus

DHclosed � log´ 2 log2lmin´�a � 2lmin 1 loga ,

(6)

which is consistent with Eq. (3) and yields the aforemen-
tioned value of a for DHclosed � 0. Clearly, this value
constitutes a lower bound for the OGY scheme since not
all the subintervals are controlled with the same parameter
r , a fact observed in numerical simulations [19].

In summary, we have introduced a formalism for study-
ing control problems in which control units are analyzed
as informational mechanisms. In this respect, a feedback
controller functions analogously to a so-called Maxwell’s
demon [20]. In fact, when applied to microscopic systems,
our results provide absolute limits to the ability of such a
demon to convert heat to work by obtaining information
[10,12]. Our main result showed that the amount of en-
tropy that can be extracted from a dynamical system by a
controller is upper bounded by the sum of the decrease of
entropy achievable in open-loop control and the mutual in-
formation between the dynamical system and the controller
created during an initial interaction. This upper bound sets
a fundamental limit on the performance of any controllers
whose designs are based on the possibilities to accede low
entropy states. Hence, its practical implications can be in-
vestigated for the control of linear, nonlinear, and complex
systems (discrete or continuous), as well as for the control
of quantum systems. For this latter topic, our probabilistic
approach seems particularly suitable for the study of quan-
tum controllers.
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