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Variational Study of 3He Droplets
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We report variational calculations of energies of 3HeN droplets (20 # N # 40), using Aziz atom-atom
interactions. The trial wave function has a simple structure, combining two- and three-body correlation
functions coming from a translationally invariant configuration-interaction description, superimposed to a
Jastrow-type correlated wave function with backflow. We find that the smallest bound drop has N � 35
atoms, and that for each N the minimum energy states have the highest spin values.

PACS numbers: 36.40.–c, 61.46.+w
The experimental research on liquid helium clusters has
been limited up to recently by the difficulties in selecting
their size. A new method based on the diffraction of a
beam from a transmission grating [1] has proven to be
successful in detecting clusters as small as 4He trimer
and dimer [2]. This experimental achievement opens
interesting perspectives on the study of helium droplets.
On the theoretical side 4He droplets have been widely
studied, and essentially exact ground state energies are
provided by diffusion Monte Carlo (DMC) calculations
[3]. In contrast, no DMC results are yet available for 3He
droplets. Such systems have been studied by means of
either variational Monte Carlo (VMC) techniques [4] or
phenomenological density functionals (DF) [5]. These
studies have shown that there is a minimum number of
atoms of 3He, estimated to be between 20 and 40 atoms,
to form a bound system. These numbers define two
closed shells in the harmonic oscillator scheme. A
shell-model calculation [6] in the open 1f2p shell has led
to the prediction that 29 atoms is the minimum number
required to form a bound system. It was also found
that valence atoms couple their spins to the maximum
value compatible with Pauli’s principle. The calculations
of Ref. [6] are based on a DF determined in the bulk,
and thus its extrapolation to such light systems is not
exempted from uncertainties. The purpose of this Letter
is to analyze these predictions within a fully microscopic
framework.

Recently we reported [7] accurate variational calcula-
tions for 4He droplets based on trial functions which com-
bine two- and three-body correlations, coming from a
translationally invariant configuration interaction (CI) de-
scription, and Jastrow-type short-range correlations. Such
wave functions represent a sizable improvement in the
ground state energy, as compared with previous ones. The
resulting upper bounds to the ground state energies are very
close to the diffusion Monte Carlo ones for 4HeN droplets
with N # 40. In this Letter we present the extension of
this Jastrow CI (JCI) scheme to 3He droplets.
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The trial wave function is written as the product of four
terms
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with R representing all single-particle coordinates.
The first two terms F"�#� are Slater determinants, re-

ferred to as spin-up (-down) particles, built up from single-
particle harmonic oscillator wave functions characterized
by the inverse length parameter a. Their role is to incorpo-
rate the statistics and roughly confine the system. By us-
ing harmonic oscillator single-particle wave functions we
secure the translational invariance of the full wave func-
tion. The Slater determinants include the Feynman-Cohen
backflow [8] in the form proposed by Schmidt et al. [9]
by replacing each coordinate ri by

ri ! ri 1
X
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In our calculations we have taken for the backflow function
h�r� the long-range form used by Pandharipande et al. [4]

h�r� �
l

r3 , (3)

with the same value for the parameter l � 5 Å3.
The third term is the two-body Jastrow correlation fac-

tor, which we take to be of the McMillan type
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As previously shown for 4He drops, this suffices to con-
veniently screen the strong short-range atom-atom repul-
sion. This form, with n � 5, reflects the cusp condition
for a 12-6 Lennard-Jones potential. For the Aziz-type po-
tentials HFDHE-2 [10] and HFD-B(HE) [11] considered
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in this Letter, we have used the values n � 5.2 Å and
b � 2.85 Å. The parameter b has been modified with re-
spect to the value 2.95 Å used in our previous calculations
on 4He systems, in order to properly account for the dif-
ferent masses of 3He and 4He atoms.

Finally the fourth term in Eq. (1) corresponds to a spe-
cial version of the CI expansion describing two- and three-
particle excitations, with the role of incorporating fine
details to the wave function at medium and long ranges.
This form is inspired by a linearized version of the coupled
cluster method (CCM) [12] at the SUB(3) truncation, i.e.,
containing translationally invariant excitations up to three
particles, three holes. The linearized version of the CCM is
actually a special CI scheme [13], much more efficient than
the usual CI methods when dealing with realistic interac-
tions. It is worthwhile noticing that the present mixed JCI
scheme is inspired in the correlated basis functions (CBF)
method as developed by Feenberg, Clark, and Krotscheck
[14] for extended systems, in which Jastrow correlations
are combined with nonorthogonal perturbation theory. Our
approach combines additive CI and multiplicative Jastrow
correlations.

The CI correlation functions f2 and f3 could be deter-
mined by minimizing the ground state energy, giving rise
to a system of coupled integro-differential equations for f2
and f3. A practical alternative is to expand these functions
in a set of Gaussians:
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where S indicates symmetrization with respect to the par-
ticle labels. It is convenient to fix one of the parameters
�bp�, say b1, to zero. In this way we cover the three
possibilities contained in the ansatz wave function: by re-
stricting the three labels p, q, r to 1, no CI correlations are
considered; by keeping two labels equal to 1, amounts to
include the linear two-body correlations; finally the unre-
stricted choice corresponds to the complete ansatz, with
two- and three-body CI correlations included in the trial
wave function. These three choices will be referred to later
on as J, JCI2, and JCI3 results, respectively. Our previous
experience with nuclear systems as well as 4He drops indi-
cates that the selection of the set of parameters �bp� is not
very critical, as far as a sufficiently large interval of length
ranges �1�

p
bp� is included. In the calculations presented

below we have used the set �bp�a2� � �0, 0.5, 1, 2, 4�.
Note that the special form of Gpqr does not spoil the anti-
symmetry nor the quantum numbers of the determinantal
wave function.
To get the bound state energies one has to minimize
the Hamiltonian expectation value �H� with respect to the
free parameters a and �Cm�, where m stands for the three
labels �p, q, r�. The wave function being linear in the
amplitudes �Cm�, their determination requires the solution
of a generalized eigenvalue problem with Hamiltonian and
norm matrices given by
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These matrices have been computed by means of the
Monte Carlo method, by carrying out a random walk
guided by the probability function j

Q
i,j g�rij�F"F#j

2.
The other adjustable parameter, a, has been mini-

mized directly. Its value is sensibly constant, around
0.24 0.25 Å21 for N between 30 and 40.

A challenging question is the determination of the Slater
determinants for a number of atoms between 20 and 40.
These two extreme cases are trivial, the first case corre-
sponding to the complete filling of 1s, 1p, 1d, and 2s
shells, and the second case to the completion of the next
1f2p major shell. Obtaining wave functions with good L
and S quantum numbers for partial occupation of the last
major shell is very cumbersome. Even the mere question
of finding the Russell-Saunders terms is a quite compli-
cated task because of the very large number of them (see,
e.g., [15]). Certainly, some extreme cases (few particles or
holes) are still manageable. In general, when the calcula-
tion is restricted to two-body operators, it may be solved
by using standard shell-model techniques, as was done in
Ref. [6], but the extension of this procedure to a fully cor-
related wave function would require a tremendous effort.

By limiting our scope to the determination of upper
bounds one may relax the requirement of having good
angular momentum quantum numbers. Keeping in mind
this idea we have chosen to work in the Cartesian coordi-
nate representation of the single-particle orbitals, and se-
lect the occupied levels in such a form that there is still
invariance under 90

±
rotations with respect to the X, Y ,

and/or Z axes. These invariant many-particle wave func-
tions are obtained by constructing third order monomials in
coordinates x, y, z. Table I displays the orbitals and the oc-
cupation numbers for the symmetric configurations corre-
sponding to particles with the same spin projection sz , for
the number of particles n in the open shell. Notice that not
all values of n give rise to wave functions with the above
mentioned Cartesian symmetry, and those do not appear in
this table.

We have performed calculations using two Aziz He-He
interactions, and the results are presented in Table II. The
optimal value of a is 0.25 Å21, for N greater than 33,
and 0.24 Å21 for the lighter systems. The oldest Aziz
potential HFDHE-2 [10] has been used in order to compare
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TABLE I. Occupation numbers for configurations in the 1f2p active shell in Cartesian coor-
dinates giving rise to wave functions invariant under 90± rotations, as a function of the number
of atoms of a given sz .

Orbitals n � 10 n � 9 n � 7 n � 6 n � 4 n � 3 n � 1

x3 1 1 0 0 1 1 0
y3 1 1 0 0 1 1 0
z3 1 1 0 0 1 1 0

x2y 1 1 1 1 0 0 0
x2z 1 1 1 1 0 0 0
y2x 1 1 1 1 0 0 0
y2z 1 1 1 1 0 0 0
z2x 1 1 1 1 0 0 0
z2y 1 1 1 1 0 0 0
xyz 1 0 1 0 1 0 1
our approach with the work of Pandharipande et al. [4],
which is the only previous microscopic determination of
3He drops. This work considered only closed-shell cases,
obtaining the energy value 4.12 6 0.14 K (compared with
ours, 3.44 6 0.05 K) for the system with N � 20 atoms,
and 21.44 6 0.08 K (ours is 22.55 6 0.07 K) for N �
40 atoms. Note that this is the total energy of the system
and not the energy per particle; in fact, the binding energies
are very small compared with the experimental value of
the uniform 3He liquid, E�N � 22.473 K [16], showing
that we are very close to the stability threshold. It should
be mentioned that the calculations of Ref. [4] include a
three-body Jastrow correlation in addition to the two-body
Jastrow term and the backflow effects. The gain in energy

TABLE II. Binding energy (in K) determined at the JCI3 ap-
proximation for several 3HeN drops as a function of the number
of spin-up (N") and spin-down (N#) atoms. Results are given for
the two Aziz potentials HFDHE-2 [10] and HFD-B(HE) [11].

N N" N# Sz HFDHE-2 HFD-B(HE)

40 20 20 0 22.55 6 0.07 23.90 6 0.07
39 20 19 1�2 21.87 6 0.09 23.17 6 0.10
38 19 19 0 21.05 6 0.11 22.29 6 0.11
37 20 17 3�2 20.42 6 0.08 21.62 6 0.09
36 20 16 2 0.06 6 0.09 21.09 6 0.09
36 19 17 1 0.30 6 0.10 20.86 6 0.10
35 19 16 3�2 0.76 6 0.08 20.33 6 0.09
34 20 14 3 1.13 6 0.06 0.09 6 0.06
34 17 17 0 1.71 6 0.06 0.67 6 0.06
33 20 13 7�2 1.49 6 0.09 0.56 6 0.09
33 19 14 5�2 1.58 6 0.08 0.66 6 0.09
33 17 16 1�2 2.07 6 0.09 1.15 6 0.10
32 19 13 3 1.92 6 0.09 1.04 6 0.09
32 16 16 0 2.68 6 0.07 1.81 6 0.08
31 20 11 9�2 2.24 6 0.07 1.42 6 0.07
31 17 14 5�2 2.46 6 0.09 1.62 6 0.09
30 20 10 5 2.15 6 0.09 1.35 6 0.09
30 19 11 4 2.53 6 0.07 1.73 6 0.07
30 17 13 2 2.82 6 0.06 2.02 6 0.06
30 16 14 1 2.89 6 0.06 2.09 6 0.07
20 10 10 0 3.44 6 0.05 3.01 6 0.05
of our approach indicates that the CI way of introducing
the three-body correlations is more effective than the usual
way of introducing them through a Jastrow factor. The
situation is similar to what we obtained for 4He drops
[7], where our JCI3 energies are better than Jastrow VMC
calculations with triplet correlations, being comparable to
DMC results.

In Table II we present also the results obtained with the
modern Aziz potential HFD-B(HE) [11]. DMC calcula-
tions using this force reproduce the experimental measure-
ments for both 4He [17] and 3He liquids [18], so we believe
our calculations to be real predictions for droplets. The
number of particles of the smallest bound system turns out
to be less than or equal to 35, a number higher than the
value of 29 found in a DF plus shell-model calculation
[6]. Here it should be mentioned that we are obtaining up-
per bounds and that we use wave functions without good
angular momentum quantum numbers. There are some ex-
ceptions to the last comment in the calculations presented:
the closed-shell systems �N" � 20, N# � 20� and �10, 10�
have obviously L � 0 and S � 0. Also our trial function
for �20, 19� has L � 3 and S � 1�2 (a f-shell hole state),
and the �20, 10� is a pure L � 0 and S � 5 system. The
other cases have a spin equal to or larger than the value
quoted in the table for Sz and a mixture of orbital angular
momentum states. In conclusion, almost all quoted val-
ues could be improved by substituting the simple product
of spin-up and spin-down Slater determinants by adequate
linear combination of open-shell Slater determinants.

The last result which emerges from our calculations is
the preference of the system for a wave function with the
maximum value of the spin S. There are some systems
in which our way of constructing the trial functions gives
several configurations with different values of Sz . It can
be seen in Table II that for a given number of atoms N , the
lowest energy is reached for the configurations having the
maximum value of Sz , even considering statistical errors.
This result gives support to the predictions of Ref. [6]. The
preference for high values of the spin bears some similarity
with the familiar Hund’s rule for atomic systems.
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To conclude, we have presented a powerful method
based in an efficient way of building variational self-
adjustable trial functions, very much analogous to an
Euler-Lagrange procedure to determine the linear two-
and three-body correlations. Our calculations significantly
improve previous microscopic determinations of these
fermionic droplets. We find an upper bound N � 35
to the minimal number of constituents able to form a
bound state. By improving the description of the Slater-
determinantal part and/or by using DMC-like algorithms
this number could be still slightly lowered. We hope
our present results will stimulate further theoretical and
experimental work on these peculiar finite fermionic
systems.
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