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Meson Structure in a Relativistic Many-Body Approach
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Results from an extensive relativistic many-body analysis utilizing a realistic effective QCD Hamilto-
nian are presented for the meson spectrum. A comparative numerical study of the BCS, Tamm-Dancoff
(TDA), and RPA treatments provides new, significant insight into the condensate structure of the vacuum,
the chiral symmetry governance of the pion, and the meson spin, orbital, and flavor mass splitting contri-
butions. In contrast to a previous glueball application, substantial quantitative differences are computed
between TDA and RPA for the light quark sector with the pion emerging as a Goldstone boson only in
the RPA.
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Common to the diverse areas of condensed matter,
molecular, atomic, and nuclear physics is the routine
implementation of many-body techniques such as the
Bardeen, Cooper, Schrieffer (BCS), Tamm-Dancoff
(TDA), and random phase approximation (RPA) methods.
Particle physics, with an inherent few-body nature, has
generally been devoid of such applications even though
hadronic structure, requiring a relativistic QCD descrip-
tion, is an extremely challenging many-body problem.
The purpose of the present Letter is to report a compara-
tive study documenting the powerful utility of the above
techniques for hadronic systems and to detail new, impor-
tant meson structure results clarifying the nature of spin
splittings and the role of chiral symmetry. The equations
of motion, while numerically solvable, exhibit a richness
and complexity beyond the simple two-body equations
such as the generalized Schrödinger schemes. We find
that both TDA and RPA solutions to an approximate
QCD Hamiltonian with linear confinement reproduce the
meson spectrum except for the pion, where only the RPA
reasonably describes the mass and decay constant due to
proper implementation of chiral symmetry.

This work complements our previous many-body
treatment [1] of the gluonic sector in which the lattice
gauge “measurements” were reproduced. Our collab-
orative program seeks to develop a rigorous effective
Hamiltonian from QCD and then to comprehensively
investigate hadronic structure by systematic, accurate
diagonalization utilizing controllable approximations.
Reference [2] details our renormalization program, based
upon a continuous cutoff regularization and similarity
transformation. That work addressed only the gluon
sector but a similar effort is currently in progress for the
quark sector. Accordingly, this paper presents many-body
solutions for only the unrenormalized effective Hamilto-
nian. The starting point is the approximate QCD quark
Hamiltonian in the Coulomb gauge
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involving the quark field Cq� �x�, current quark mass mq,
and color density ra��x� � Cy

q � �x�TaCq� �x�. Coupling
to the gluonic sector is omitted and the Faddeev-Popov
determinant is replaced by its lowest order unit value. Con-
sistent with our previous work [1], the confining potential
is a linear interaction, V � sj �x 2 �yj, rather than the har-
monic oscillator [3,4] since lattice gauge theory generates
this form with slope (string tension) s � 0.18 GeV2.
Instead of a simplified gap differential equation for the
harmonic oscillator potential, we solve a numerically quite
sensitive nonlinear integral equation (see below) and re-
produce earlier results [5]. The density-density two-body
form permits only color singlets in the physical spectrum
as other SUc�3� representations are shifted to infinite
energy.

Next we introduce our first many-body improvement
by performing a BCS rotation (similarity transformation)
from the bare (undressed) quark basis to an improved
quasiparticle basis. This entails rotated spinors in the quark
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field expansion with quasiparticle operators B, D instead
of bare operators b, d (see Ref. [4] for details)
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The spin state is denoted by l and color indices are sup-
pressed. The gap angle f�k� governs the BCS vacuum,
jV�, defined by BljV� � DljV� � 0. This vacuum, a co-
herent state containing quark condensates (Cooper pairs),
is an improvement over the trivial vacuum. The gap
angle is obtained variationally by minimizing the vacuum
(ground state) energy d�VjH 2 EjV� � 0 yielding the
gap equation which is similar to the Schwinger-Dyson
© 2000 The American Physical Society
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equation for the quark self-energy in the rainbow approxi-
mation

ksk 2 mqck �
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�2p�3 V̂ �j �k 2 �pj�

3 �skcpk̂ ? p̂ 2 spck� , (4)

where V̂ �j �k 2 �pj� � 28psj �k 2 �pj4 is the linear poten-
tial in momentum space. The solution sk � sinf�k�, ck �
cosf�k� also provides the quark condensate �qq�
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in the BCS vacuum. From the gap equation at large k,
sk ! mq�

q
m2
q 1 k2, yielding a quadratically divergent

condensate for nonzero current quark mass which must
be renormalized [6]. For mq � 0 we compute �qq� �
2�113 MeV�3. We also added the Coulomb 1

r interac-
tion corresponding to one gluon exchange, with a rea-
sonable cutoff, and found a slight improvement to 119,
in agreement with the more elaborate, renormalized result
of [6] but still substantially less than lattice theory results
(	250). The BCS vacuum also exhibits spontaneous chiral
symmetry breaking resulting in a constituent quark mass,
m̂q, which cannot be extracted from the gap energy, ek ,
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since ek diverges for k ! 0. Following previous pre-
scriptions [3–5], we introduce the running dynamic mass,

m̂
dyn
q �k�, by sk � m̂

dyn
q �k��

q
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q �k�2 1 k2 and obtain

m̂q from the slope of the gap angle near zero momen-

tum [m̂q 	 m̂
dyn
q �0�]. This yields m̂u�d 	 80 MeV for u,

d flavors with mu � md � 5 MeV and m̂s 	 250 MeV
for the s quark with ms � 150 MeV. Again these values
are somewhat lower than those used in phenomenological
quark models indicating a more sophisticated vacuum is
needed for which we propose the RPA as detailed below.

Using these quasiparticle creation operators we now ad-
dress excited meson states and first construct the TDA
Fock space wave function built on the BCS vacuum. For
a meson with quantum numbers nJp (radial�node number
n, total angular momentum J, and parity p) the leading
qq state is given by
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Diagonalizing H in this model space generates the TDA
equation of motion (analogous to the Bethe-Salpeter equa-
tion)

�CnJp

j �Ĥ,By
aD

y
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ab . (9)

Very significantly, the relativistic structure of our effective
interaction contains an important spin dependence. This is
revealed more clearly in the TDA partial-wave equations
for a meson in state nJp with mass MnJp having quantum
numbers L (orbital) and S (total spin)
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with kernel KJ
p

LS �k,p� structure: (1) pseudoscalar
(Jp � 02), 2�ckcpV̂1 1 �1 1 sksp�V̂0�; (2) scalar
�Jp � 01�, 2�ckcpV̂0 1 �1 1 sksp�V̂1�; (3) vector
�Jp � 12�, 2ckcpV̂1 1 �1 1 sk� �1 1 sp�V̂0 1 �1 2

sp� �1 2 sk� � 4
3 V̂2 2

1
3 V̂0�; (4) pseudovector �Jp � 11�,

ckcp�V̂0 1 V̂2� 1 2�1 1 spsk�V̂1. Here V̂i is the angular
integral over x � k̂ ? q̂ of V̂ �j �k 2 �qj� with powers xi .

The TDA spectrum is given in Fig. 1 (dotted lines) for
the pseudoscalar and vector mesons. Note that in this
model isoscalar and isovector states are degenerate and
the flavor structure is not predicted. We therefore adopt the
standard SUF�3� flavor mixings for h, h0, v, and f. Con-
sidering that s is the only, but predetermined, parameter
in this model, the spectrum is qualitatively reasonable with
the exception of the ground state pion and the higher ra-
dial (node number) excited states. From model calculation
the spin splitting between the r and p is about 200 MeV,
insufficient to describe the roughly 600 MeV observed dif-
ference [7]. This shortcoming is due to the inability of the
TDA to properly include constraints from chiral symmetry.
Regarding the high lying mass states, our predictions are
incomplete since a consistent analysis within this model
would entail mixing between radial excited one quasiparti-
cle, one quasihole states and more complicated Fock states
having two, three, etc. quasiparticle, quasihole (but lower
radial) components. Such a calculation is feasible and will
be reported in the future.

Finally, we formulate the RPA [8] and generalize the
meson creation operator for state jnJp � � Q

y
nJp jVRPA�,
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This operator both creates and destroys qq pairs from
an improved vacuum, satisfying QnJp jVRPA� � 0, which
contains quark correlations beyond the BCS. To obtain
the RPA equations of motion we make use of the quasibo-
son approximation [8] in which pairs of operators, BD, are
treated as boson operators. Using Eq. (9) we replace the
BCS vacuum with the RPA and substitute Qy for ByDy.
For the important pseudoscalar �Jp � 02� meson channel
we obtain the coupled partial-wave RPA equations
1103
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where
F�k,p� � 2cpckV̂1 1 2�1 1 spsk�V̂0 , (14)

G�k,p� � 2cpckV̂1 2 2�1 2 spsk�V̂0 , (15)

with similar expressions for the other meson channels. The
RPA spectrum (dashed lines) is summarized in Fig. 1. No-
tice the improvement with only the pseudoscalar states (p
and h) shifted downward from the TDA. Related, we now
also obtain the correct chiral limit for the pion mass. As
expected from chiral arguments concerning the Goldstone
boson nature of the pion, the RPA pseudoscalar mass (pure
u�d flavor) approaches zero for mq ! 0 as illustrated in
Fig. 2 (solid curve). Appropriately, the scalar f0�980�,
which has L � 1, S � 1, mass (dotted curve) converges
to a nonzero value (820 MeV) in the same limit (also note,
most models significantly overpredict the mass of this con-
troversial meson, our physical prediction is 860 MeV).
Hence the RPA clarifies the major source of mass split-
ting between the p and r —roughly 200 MeV from spin
dependence, as in the TDA, but a much larger amount,
about 400 MeV, due to chiral symmetry constraints. This
finding sharply contrasts with traditional quark models
which, while providing good phenomenological mass de-
scriptions, attribute the p-r mass splitting to one gluon
exchange spin dependent potentials [9].
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FIG. 1. Pseudoscalar and vector meson spectrum. Data (solid
line), RPA (dashed line), and TDA (dotted line).
The RPA also improves the quark condensate and pion
decay constant. Performing an expansion of this vacuum
in powers of boson operators and keeping only leading
corrections exciting up to two mesons from the BCS
vacuum, we obtain a much larger condensate. For zero
current quark mass, �qq� � 2�300 MeV�3, in better
agreement with the currently accepted value. Interest-
ingly, this overestimation of ground state correlations
seems to be characteristic of RPA, as previously doc-
umented in other fields of physics [8]. Finally, in the
chiral limit we compute the pion decay constant to this
truncated RPA vacuum fp � 60 MeV (data 93 MeV),
which is substantially better than the TDA value of
17 MeV. Related and also noteworthy, we have numeri-
cally verified the generalized Gell-Mann-Oakes-Renner
relation, 22mq�qq� �

P
n M

2
nf

2
n , by independently com-

puting terms on both sides of the equation. The excited
pseudoscalar states negligibly contribute as their fn are
suppressed in the chiral limit.

Summarizing, we have documented the utility of
several many-body techniques, especially the RPA, for
investigating the QCD structure of hadrons. In conjunc-
tion with our previous glueball study we have also further
established our effective Hamiltonian and many-body
approach as, with just the independent lattice parameter
s, the semiquantitative features of the vacuum, meson,
and glueball spectrums have all been reproduced. Because
the approximations are controllable, this framework is
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FIG. 2. Chiral symmetry in the RPA. For mq ! 0 the pseu-
doscalar (solid line) but not scalar (dotted line) meson mass
vanishes.
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amenable to systematic improvement and should be
appropriate for more challenging hadronic investigations,
some in progress, such as baryons, hadron hidden flavor
(higher Fock states), and hybrids. The details of the
present calculation, as well as several issues concerning
renormalization [2] and the h-h0 system are deferred to a
subsequent, major publication.
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