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Tiling the Plane without Supersymmetry

D. Bazeia and F. A. Brito
Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba, Brazil

(Received 20 August 1999; revised manuscript received 21 October 1999)

We present a way of tiling the plane with a regular hexagonal network of defects. The network is
stable and follows in consequence of the three-junctions that appear in a model of two real scalar fields
that presents Z3 symmetry. The Z3 symmetry is effective in both the vacuum and defect sectors, and no
supersymmetry is required to build the network.

PACS numbers: 11.27.+d, 11.30.Er, 11.30.Pb
Domain walls appear in diverse branches of physics, in-
volving energy scales as different as the ones, for instance,
in magnetic materials [1] and in cosmology [2]. They
live in three spatial dimensions as bidimensional objects
that arise in systems with at least two isolated degenerate
minima. In field theory they appear in the �3, 1� dimen-
sional space-time, and this may happen in supersymmetric
theories, although supersymmetry plays no fundamental
role in the presence of domain walls.

Very recently, in a paper by Gibbons and Townsend [3],
and also in Refs. [4,5], one investigates the presence of
domain walls and their possible intersections in a Wess-
Zumino model, with a polynomial superpotential. In the
supersymmetric theory, one can classify the classical so-
lutions as BPS and non-BPS states, according to the work
of Bogomol’nyi, and of Prasad and Sommerfield [6]. The
BPS states are stable, and are expected to play some role
in investigating duality in supersymmetric models. We re-
call that no BPS state can be annihilated under continuum
variation of the parameters that define the supersymmetric
theory.

In Ref. [7] one investigates models of coupled real scalar
fields in bidimensional space-time. These investigations
provide a concrete way of finding BPS states and suggest
other studies, in particular on the subject of defects in-
side defects; see Ref. [8]. Most of the models investigated
in [7,8] can be seen as real bosonic portions of supersym-
metric theories. In supersymmetric models the presence of
discrete symmetry may produce BPS and non-BPS defects.
The BPS states lie in shorter multiplets, and preserve the
supersymmetry only partially [9,10]. There are BPS states
that preserve 1�2 of the supersymmetry, but the possibility
of BPS states preserving 1�4 supersymmetry is subtler, and
is shown to appear as junctions [11,12] of domain walls in
the recent papers [3–5].

In the present work we start dealing with the bosonic
portions of supersymmetric theories. We do this guided
by the discrete Z3 symmetry, with the aim of describing
the presence of three-junctions and the network of defects
that it can generate. We first point out that supersymme-
try introduces restrictions that may lead to instability of
the junction, or at least of the network that it could gener-
ate. We then examine another model, and show that all the
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difficulties found in the supersymmetric context are cir-
cumvented by just giving up supersymmetry.

The subject of this work may be of interest to several
different branches of physics, in particular in applications
concerning the entrapment of networks of defects inside
domain walls. This possibility can be implemented with
three scalar fields, in models engendering the Z2 3 Z3
symmetry, following the lines of Refs. [8,13]. Other ap-
plications may include strong interactions, if we recall that
the Z3 group is the center of the SU�3� group; see, for
instance, Refs. [14,15]. Also, there are applications to sys-
tems of condensed matter, in particular on issues concern-
ing pattern formation [16], as for instance in the case of
the thermal convection studied in Ref. [17].

We start describing the two real scalar fields f and x

in bidimensional space-time with the Lagrangian density

L �
1
2

≠af≠af 1
1
2

≠ax≠ax 2 V . (1)

Here V � V �f, x� is the potential. In the supersymmetric
case it has the general form

V �f, x� �
1
2

W2
f 1

1
2

W2
x , (2)

where W � W�f, x� is the superpotential.
The superpotential allows introducing several prop-

erties, as shown in Refs. [7,8]. For instance, for static
fields the equations of motion are solved by first-order
differential equations df�dx � Wf and dx�dx � Wx .
The energy of solutions of the first-order equations are
given by E

ij
B � jDWijj, with DWij � Wi 2 Wj and

Wi � W�fi, xi�, where �fi, xi� represents the ith vac-
uum state of the model. This is the Bogomol’nyi bound,
and the corresponding solutions are BPS solutions. The
BPS solutions are linearly or classically stable.

We guide ourselves toward the topological solutions by
introducing the topological current

Ja � ´ab≠b

µ
f

x

∂
. (3)

It obeys ≠aJa � 0, and it is also a vector in the �f, x�
plane. For static configurations we have Jt

a Ja � rt r,
where r � r�f,x� is the charge density. This charge
density allows writing rtr as twice the kinetic energy
© 2000 The American Physical Society
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density of the topological solution, and this can be used
to infer stability of junctions; see below.

Let us now consider a specific model, defined by the
superpotential [13]
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The first-order differential equations are given by
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The model is described by the fourth-order polynomial
potential
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Thus, it behaves standardly in one, two, and three spatial
dimensions.

The above potential presents the three vacuum states
�0,

p
4�3�, �21, 2

p
1�3�, and �1, 2

p
1�3�. These min-

ima form an equilateral triangle invariant under the Z3 ro-
tations, with side l � 2. The values of the superpotential
at the minima are W1 � 2l, W2 � 2l, and W3 � 22l.
The energies of the BPS states are jlj, 3 jlj, and 4 jlj. All
the three sectors are BPS sectors, but they do not present
the Z3 symmetry that connects the vacuum states. The
highest energy is associated to the sector connecting the
second and third vacuum states. This is the only sector
where we can find explicit solutions. They are given by
f�x� � 2 tanh�3l x� and x�x� � 2

p
1�3 . This is a BPS

state, representing an orbit in the �f, x� plane. The orbit
is a straight-line segment that connects the corresponding
vacuum states. The orbits connecting the other vacua can-
not be straight-line segments. They cannot be obtained by
rotating the �f, x� plane according to the Z3 symmetry,
and so the defect sectors do not present the Z3 symmetry
that connects the vacuum states. This fact also appears
when one identifies the tensions of the BPS defects. They
are given by t1 � jlj, t2 � 3 jlj, and t3 � 4 jlj. They
are different and do not obey the Z3 symmetry. They are
such that t3 � t1 1 t2, and do not strictly obey the tri-
angle inequality one needs to ensure stability [12] of the
three-junction that appears in this model.

To circumvent instability of the three-junction we now
follow Refs. [3,4]. We make contact with these works after
considering superpotentials that satisfy Wff 1 Wxx � 0.
In this case, for harmonic superpotentials one adds to the
two first-order equations df�dx � Wf and dx�dx �
Wx the two new [13] first-order equations: df�dx �
2Wx and dx�dx � Wf. Solutions to these equations also
minimize the energy and solve the equations of motion.
This allows introducing eW�f, x� such that eWf � 2Wx

and eWx � Wf. We use W and eW to introduce the com-

plex superpotential, W � W 1 i eW . We write the com-
plex superpotential in terms of the complex field f 1 ix ,
and this is the way one gets from the investigations of
Refs. [7,8] to the recent possibility [3–5] of describing
three-junctions preserving 1�4 supersymmetry. However,
junctions require the presence of at least three minima, and
this is achieved only when the superpotential is of at least
the fourth-order power in the complex field. This means
that the model behaves standardly only in one and two spa-
tial dimensions. In this case one can show explicitly [3,4]
that the three-junction is stable and breaks 1�4 supersym-
metry, although supersymmetry itself does not allow the
presence of a stable network of defects [3–5]. Owing to
the fact that each adjacent junction in the network has op-
posite winding number, any adjacent vacua should be con-
nected with defect solutions also having opposite winding
numbers along the same orbit [5]. Since we have to use
different conjugate Bogomol’nyi equations to take into ac-
count these winding numbers, the network clearly cannot
be BPS and then can decay.

We then give up supersymmetry, turning our attention to
polynomial potentials that engender the Z3 symmetry, and
that support stable three-junctions that generate a regular
hexagonal network of defects. Interestingly, we have found
a fourth-order polynomial potential that does the job. It is
given by

V �f, x� � l2f2

µ
f2 2

9
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∂
1 l2x2

µ
x2 2

9
4

∂
1 2l2 f2 x2 2 l2f �f2 2 3x2� 1

27
8

l2.

(8)

This potential was introduced in Ref. [18]. The equations
of motion for static configurations are

d2f

dx2 � l2f

µ
4f2 1 4x2 2 3f 2

9
2

∂
1 3l2x2, (9)

d2x

dx2 � l2x

µ
4f2 1 4x2 1 6f 2

9
2

∂
. (10)

The potential has three degenerate minima, at the points
y1 � �3�2� �1, 0� and y2,3 � �3�4� �21, 6

p
3�. These
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minima form an equilateral triangle, invariant under the Z3

symmetry. The distance between the minima is �3�2�
p

3.
We can obtain the topological solutions explicitly. The

easiest way to do this follows by first examining the sector
that connects the vacua y2 and y3. This is so because
in this case we set f � 23�4, searching for a straight-
line segment in the �f, x� plane. This is compatible with
Eq. (9), and reduces the other equation (10) to the form

d2x

dx2 � l2

µ
4x3 2

27
4

x

∂
. (11)

This implies that the orbit connecting the vacua y2 and
y3 is a straight line. It is such that along the orbit the x

field feels the potential l2 �x2 2 �27�16��2. This shows
that the model reduces to a model of a single field, and the
solution satisfies the first-order equation

dx

dx
�

p
2 l

µ
x2 2

27
16

∂
. (12)

The solution is

x�x� � 2
3
4

p
3 tanh

0@s
27
8

l x

1A. (13)

The other solutions can be obtained by rotations obeying
the Z3 symmetry of the model.

The full set of solutions of the equations of motion are
collected below. In the sector connecting the minima y2
and y3 they are

f
�6�
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3
4
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x
�6�
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3
4

p
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√s
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8

l x

!
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In the sector connecting the minima y1 and y2 they are

f
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8

6
9
8
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!
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x
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p
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8

l x

!
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In the sector connecting the minima y1 and y3 they are

f
�6�
�1,3� �

3
8

7
9
8

tanh

√s
27
8

l x

!
, (18)

x
�6�
�1,3� � 2

3
8

p
3 7

3
8

p
3 tanh

√s
27
8

l x

!
. (19)

The label �6� is used to identify kink and antikink. All the
solutions have the same energy, �9�4�

p
27�8 jlj.

We examine how the bosonic fields behave in the back-
ground of the classical solutions. We do this by consider-
ing fluctuations around the static solutions f�x� and x�x�.
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We use the equations of motion to see that the fluctuations
depend on the potential

U�x� �

µ Vff Vfx

Vxf Vxx

∂
. (20)

Evidently, after obtaining the derivatives we substitute the
fields by their classical static values f�x� and x�x�. The
model under consideration is defined by the potential (8).
In this case we use (14) and (15) to obtain two decoupled
equations for the fluctuations. The potentials of the corre-
sponding Schrödinger-like equations are

U11�x� �
27
8

l2

"
4 2 2sech2

√s
27
8

l x

!#
, (21)

U22�x� �
27
8

l2

"
4 2 6sech2

√s
27
8

l x

!#
. (22)

The eigenvalues can be obtained explicitly: in the x direc-
tion we get w

x
0 � 0 and w

x
1 � �9�2�

p
l2�2, and in the

f direction we have w
f
0 � �9�2�

p
l2�2. This shows that

the pair (14) and (15) is stable, and by symmetry all the
three topological solutions are stable solutions.

The classical solutions present the nice property of hav-
ing energy evenly distributed in their kinetic (k) and po-
tential (p) portions. In terms of energy density they are

k�x� � p�x� �
1
4

µ
27
8

∂2

l2sech4

0@s
27
8

l x

1A . (23)

To understand this feature we recall the calculation done
explicitly in the sector with f � 23�4, constant. There
the model is shown to reduce to a model of a single field, a
model that supports BPS solutions. Within this context, the
above solutions are very much like the non-BPS solutions
that appear in supersymmetric systems [13]. We use this
property and the topological current (3) to obtain rtr � ´,
where ´�x� � k�x� 1 p�x� is the (total) energy density
of the solution. We use this result and the notation ij
to identify the sector connecting the vacua �fi, xi� and
�fj, xj�, to show that for any two different sectors ij and
jk, i, j, k � 1, 2, 3, we get

� rij 1 rjk�t � rij 1 rjk� , rt
ijrij 1 r

t
jkrjk . (24)

This condition shows that the three-junction is a process of
fusion of defects that occurs exothermically, providing sta-
bility of junctions in the present model. This result is more
general than the one in Ref. [12], which appears within the
context of supersymmetry. Evidently, our result also works
for BPS and non-BPS solutions that appear in supersym-
metric models, with the property of having energy evenly
distributed in their kinetic and potential portions [13].

We notice that the orbits corresponding to the stable
defect solutions form an equilateral triangle in the �f, x�
plane. This is so because the solutions are straight-line
segments joining the three vacuum states in configuration
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FIG. 1. A regular hexagonal network of defects, formed by
three-junctions surrounded by domains representing the vacua
y1 � 1, y2 � 2, and y3 � 3.

space. They are degenerate in energy, and this allows
associating to each defect the same tension,

t �
9
4

s
27
8

jlj . (25)

This makes tij , tjk 1 tki , i, j, k � 1, 2, 3, and now the
inequality is strictly valid in this case, stabilizing the three-
junction that appears in this model when one enlarges the
space-time to three spatial dimensions.

We consider the possibility of junctions in the plane,
which may give rise to a planar network of defects. We
work in the �2, 1� space-time, in the plane �x, y�. We iden-
tify the plane �x, y� with the space of configurations, the
plane �f, x�. We illustrate this situation by considering,
for instance, the solutions we have already obtained. They
are collected in Eqs. (14)–(19) in (1,1) dimensions. In the
planar case they change to
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(31)
These planar defects are domain walls, and can be used to
represent the three-junction in the limit of thin walls.

The three-junction that appears in this Z3-symmetric
model allows building a network of defects, precisely in
the form of a regular hexagonal network, as depicted in
Fig. 1 in the thin wall approximation. In this network the
tension associated to the defect is the typical value of the
energy in this tiling of the plane with a regular hexago-
nal network, which seems to be the most efficient way of
tiling the plane. As we have shown, our model behaves
standardly in �3, 1� dimensions. It supports stable three-
junctions that generate a stable regular hexagonal network
of defects.
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