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Nonlinear Supergravity on a Brane without Compactification
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We show that smooth domain wall spacetimes supported by a scalar field separating two anti–de Sitter–
like regions admit a single graviton bound state. Our analysis yields a fully nonlinear supergravity treat-
ment of the Randall-Sundrum model. Our solutions describe a pp-wave propagating in the domain wall
background spacetime. If the latter is a Bogomol’nyi-Prasad-Sommerfeld state, our solutions retain some
supersymmetry. Nevertheless, the Kaluza-Klein modes generate “pp curvature” singularities in the bulk
located where the horizon of the anti–de Sitter region would ordinarily be.

PACS numbers: 11.10.Kk, 04.50.+h, 04.65.+e, 11.25.Mj
1. Introduction.—It has long been thought that any at-
tempt to model the Universe as a single brane embedded
in a higher-dimensional bulk spacetime must inevitably
fail because the gravitational forces experienced by mat-
ter on the brane, being mediated by gravitons traveling in
the bulk, are those appropriate to the higher-dimensional
spacetime rather than the lower-dimensional brane. Re-
cently, however, Randall and Sundrum [1,2] have argued
that there are circumstances under which this need not
be so. Their model involves a thin “distributional” static
flat domain wall, or three brane, separating two regions
of five-dimensional anti–de Sitter (AdS) spacetime. They
solve for the linearized graviton perturbations and find a
square integrable bound state representing a gravitational
wave confined to the domain wall. They also found the
linearized bulk or “Kaluza-Klein” graviton modes. They
argue that the latter decouple from the brane and make neg-
ligible contribution to the force between two sources in the
brane, so that this force is due primarily to the bound state.
In this way we get an inverse square law attraction rather
than the inverse cube law one might naively have antici-
pated (see [3] for a related discussion).

This result is rather striking and raises various questions.
For example, one would like to know how general the ef-
fect is. It is just an effect of the linearized perturbations or
does it persist when nonlinearities are taken into account?
One would expect to get only one massless spin two bound
state if the effective theory on the brane is to be general
relativity. In their derivation a crucial role is played by a
delta function in the linearized graviton equation of mo-
tion. This is responsible for the unique bound state. It also
seems that the effect will only work for domain walls and
not for other branes. However, the full dynamics of the do-
main wall is not treated in detail in the Randall-Sundrum
model. In fact, gravitating domain walls have a drastic ef-
fect on the curvature of the ambient spacetime and it is not
obvious that a simple model involving a single collective
coordinate representing the transverse displacement of the
domain wall is valid.

For these reasons it seems desirable to have a simple
nonsingular model which is exactly solvable. It is the
purpose of this Letter to provide that.
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2. Thick domain walls in AdS domains.—We first seek
a static domain wall solution of the d-dimensional Einstein
equations

Rmn 2
1
2Rgmn � ≠mF≠nF

2 gmn� 1
2≠aF≠bFgab 1 V �F�� , (2.1)

where a, b � 0, 1, 2, . . . , d 2 1. The right-hand side of
(2.1) is the energy momentum tensor of one or more scalar
fields F with potential V �F� whose kinetic energy term
may contain a nontrivial metric on the scalar field mani-
fold. The metric is assumed to be of the form

ds2 � dr2 1 e2A�r�hmndxmdxn , (2.2)

where m, n � 0, 1, 2, . . . , d 2 2 and hmn is the flat
Minkowski metric. The scalar field is assumed to depend
only on the transverse coordinate r , and if the prime
denotes differentiation with respect to r then the Einstein
equations require

2F0F0 � �d 2 2�A00,µ
1
2

F0F0 2 V

∂
�

�d 2 2� �d 2 1�
2

�A0�2.
(2.3)

These two equations imply the scalar field equation,

F00 1 �d 2 1�F0A0 �
≠V
≠F

. (2.4)

If there is a nontrivial covariant metric on the scalar field
manifold, the right-hand side of (2.4) includes the con-
travariant metric.

A domain wall solution separating two anti–de Sitter
domains with the same cosmological constant would have
A � 2jrj�a as jrj ! `.

If the potential V has the special form

V �
1
2

µ
≠W
≠F

≠W
≠F

2
d 2 1
d 2 2

W2

∂
, (2.5)

where W � W�F� is a suitable superpotential, and
Einstein equations (2.3) and the scalar equation (2.4)
are solved by solutions of the first order Bogomol’nyi
equations:

F0 �
≠W
≠F

, A0 � 2
1

d 2 2
W , (2.6)
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Note that the spacetime is uniquely specified by giving a
solution of (2.6) which is the same as the equation for a do-
main wall in the absence of gravity. One then obtains A by
quadratures. The vacua correspond to critical points of the
superpotential W . At these points the potential V is nega-
tive, and so one is in an anti–de Sitter phase. Recently,
there has been a lot of interest in the possibility of obtaining
such potentials within the context of d � 5 gauged super-
gravity models [4–7]. At present no superpotential with
the correct properties derived from a supergravity model
has yet been found. However, a solution was exhibited in
[8] which is not derived from a supergravity model. We
will return to this point in the last section. We will now
show, without assuming that it is supersymmetric or satis-
fies the first order equations, how to superpose a smooth
domain wall background with plane-fronted gravitational
waves moving in the anti–de Sitter background.

3. pp-waves on the brane: the bound state.—An ex-
act solution of Einstein’s equations representing a gravita-
tional wave moving at the speed of light in the x1 direction
is given by retaining the form F�r� and A�r� but modify-
ing the metric (2.2) to take the form

ds2 � dr2 1 e2A�r��2dudy 1 H�u, r , xi
��du2

1 dxi
�dxi

�� , (3.1)

with u � t 2 x1, y � t 1 x1, i � 2, . . . , d 2 3, and
where the u dependence of H is arbitrary but its depen-
dence upon r and xi

� is governed by

H 00 1 �d 2 1�H 0A0 1 e22A=2
�H � 0 , (3.2)

where =2
� is the flat Laplace operator in the coordinates

xi
�. This will have half as much supersymmetry as the

domain wall background. One may further generalize this
solution by replacing the flat metric dxi

�dxi
� by an ar-

bitrary �d 2 3�-dimensional Ricci flat metric g�. If g�

admits covariantly constant spinors, then the background
will still admit some supersymmetry.

If g� is flat space, solutions of (3.2) propagate in sur-
faces of constant r at the speed of light in the (arbitrarily
chosen) x1 direction with an amplitude depending upon
r . Fourier analyzing in the x� direction gives H ~ eikx� ,
where k could, in principle, depend upon u. If k is real,
solutions would propagate faster than light in a given r �
const surface, and would appear as tachyons to an observer
on the brane. On the other hand, solutions for which k is
purely imaginary propagate on the brane like Kaluza-Klein
modes. Thus, if k2 � 2m2, i.e., =2

�H � m2H, we are
led to the equation

H 00 1 �d 2 1�H 0A0 1 e22Am2H � 0 . (3.3)

Consider the zero modes, i.e., solutions with m2 � 0.
We take H � F�r�Hij�u�xi

�xj
� and find that F � C1 1

C2

Rr dse2�d21�A�s�, where C1 and C2 are constants. The
graviton perturbation h � e22AH will diverge exponen-
tially for large values of jrj unless C2 � 0. We will return
to this divergence in the next section. The mode for which
C2 � 0, C1 � 1, and

H � Hij�u�xi
�xj

� (3.4)

may be identified as a fully nonlinear version of the zero
mode of Randall and Sundrum on a general domain wall
background. Here, Hij�u� is an arbitrary trace free sym-
metric matrix which determines the polarization state of
the graviton. The choice (3.4) is made so that the solution
has a d-dimensional isometry group acting on the surfaces
r � const and u � const. This invariance is not mani-
fest in the coordinates �r , u, y, x��, but is in Rosen coor-
dinates [9] �ũ, ỹ, x̃��, in which (3.1), given (3.4), assumes
the form

ds2 � dr2 1 e2A�2dudỹ 1 Aij�u�dx̃i
�dx̃j

�� , (3.5)

where u � ũ, y � ỹ 1 1
2

�Aij�u�x̃i
�x̃j

�, and xi
� �

Pi
j�u�x̃j

�. Here, Aij�u� � Pm
i�u�Pm

j�u�, the overdot
denotes differentiation with respect to u, and the matrix
Pi

j�u� is a solution of P̈i
j � HikPk

j . To make contact
with Refs. [1,2], we linearize, setting Pij � dij 1 1

2cij ,
so that c̈ij � Hij . The quantity c is essentially the
perturbation considered in [1]. Rosen coordinates are
in general rather pathological at the nonlinear level and
awkward to use. In our nonlinear analysis we shall, from
now on, use only the coordinates �r , u, y, x��.

4. pp Wave in the bulk: blueshift and curvature
singularities.—Our spacetimes are timelike and lightlike
geodesically incomplete as jrj ! `. In the absence of
gravitational waves, i.e., H � 0, r � ` corresponds to a
regular Cauchy horizon, and the solution may be extended
through the horizon (see, for example, Ref. [10]). If
H fi 0, however, the solutions will generically become
singular as jrj ! `, and will not admit an extension.
The nature of this singularity is most easily studied when
the background is taken to be exactly AdSd . If we let
z � aer�a then the metric (3.1) can be recast in so-called
“Siklos” coordinates [11–14]:

ds2 �
a2

z2 �dz2 2 dudy 1 Hdu2 1 dxi
�dxi

�� , (4.1)

where H now satisfies the generalized Siklos equation

z�d22� ≠

≠z

∑
1

zd22

≠H
≠z

∏
1 =2

�H � 0 .

Because all invariants formed from the Weyl tensor of (4.1)
necessarily vanish, it is not possible to detect curvature sin-
gularities directly by calculating invariants. However, the
necessary conditions that one may extend through the sin-
gularity in the metric at z � ` is that the components of
the Riemann tensor in an orthonormal frame which has
been parallel propagated along every timelike geodesic are
finite. This requirement arises because freely falling ob-
servers move along timelike geodesics, and the compo-
nents of the curvature tensor will measure the tidal forces
which these observers experience. Following the demon-
stration in [14], one may calculate these terms explicitly
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for the Siklos metrics. One finds that certain frame com-
ponents of the Riemann tensor generically assume the form

R�a� �b� �a� �b� �
L

d 2 1
6 z5

µ
1
z

≠H
≠z

∂
,z

, (4.2)

where , z denotes differentiation relative to z, and where
we have suppressed various constants which are irrelevant
to this discussion. It follows that any solution with z de-
pendence cannot be extended, and hence is singular. One
sees that the z-dependent piece of (4.2) is the contribu-
tion from the Weyl tensor. It would therefore seem that
the gravitons will be heavily “blueshifted” as we move to-
wards large values of z.

If =2
�H � m2H, the Siklos equation has solutions of

the form

H � z�d21��2eikx� �D1J�d21��2�mz� 1 D2Y�d21��2�mz�� ,
(4.3)

where Jn�x� and Yn�x� are Bessel functions, and D1, D2
are some constants. The z dependence of H has the same
form as the Kaluza-Klein modes of [1,2]. The behavior
near z � ` shows that these are singular on the Cauchy
horizon.

In order to get a better feel for the singular nature of
these spacetimes, it is useful to focus on a specific example
of a Siklos-type metric, where the z dependence is non-
trivial. The simplest example is the higher-dimensional
generalization [15,16] of Kaigorodov’s spacetime [17], for
which H is

H�z� � zd21.

The Kaigorodov metric is

ds2 �
a2

z2 �2�1 2 zd21�dt2 2 2zd21dtdx1

1 �1 1 zd21� �dx1�2 1 dz2 1 dx2
�� . (4.4)

This is the AdSd analog of the simplest vacuum pp wave,
namely, the homogeneous pp-wave in flat space. It has
d 2 1 obvious translational Killing vectors, and is also
invariant under the R1 action:

�z, u, y� ! �lz, l�32d��2u, l�d11��2y� .

This action, combined with translations in u and y, gener-
ates a three-dimensional group of Bianchi type VIh, where
h � 21

�d21�22 . Therefore, the Kaigorodov isometry group
contains a simply transitive subgroup which takes every
point with z positive to any other point with z positive. A
similar d-dimensional simply transitive group exists in the
AdSd case, for which the R1 action is simply z ! lz.
In the AdSd case, we can extend beyond the reach of the
group, in the Kaigorodov case we cannot.

Clearly, free falling timelike observers (who can cross
the surface z � ` after a finite period of affine parame-
ter time [14]) will see infinite tidal forces in this region.
This shows that there are naked curvature singularities at
the points z � `. Given our discussion in the previous
section, where we saw that generic z-dependent graviton
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perturbations will diverge at large z, it is clear that we
should regard these singularities as a generic feature of
Siklos spacetimes.

5. Discussion.—We have shown that it is possible to
include a nonlinear gravitational wave on a thick domain
wall background, in such a way that one may recover the
Randall-Sundrum bound state. Given the formal Witten
style stability proofs in [4], which work as long as one
has a solution of the first order equations, one might have
thought that this would ensure that the Randall-Sundrum
scenario could be perturbed in this way without problems.
However, somewhat to our surprise, we have found that,
generically, gravitons propagating in the bulk become sin-
gular on what is a Cauchy horizon in the unperturbed
spacetime. These singularities are somewhat unusual, in
that scalar invariants formed from the curvature tensor do
not blow up but rather the components of the curvature
in a parallel propagated frame along a timelike geodesic
do blow up. Such singularities are called “pp curvature
singularities” [14,18].

One might worry that these singularities signal a break-
down in our ability to make unitary predictions. However,
any statements about unitarity should be restricted to
physics on the brane at z � const. Any pathological
effects which may emerge from the singularity will be
heavily redshifted by the time they reach the brane. Con-
sequently, the extent to which these singularities signal a
pathology of the theory is at present unclear. Interestingly,
if one considers massless z-independent pp-waves (these
would correspond to the Randall-Sundrum zero mode
bound state), one finds that the components of the curva-
ture do not blow up, and presumably the spacetime has a
nonsingular extension.

In conclusion, we would like to return to the question
of whether a suitable superpotential exists which can be
derived from a supergravity model. The results of [4] and
[7] show that, for the simplest case of a single scalar field
in models of the type studied in [19], they do not. In
fact, one may show quite generally that, for the models
in [19] with an arbitrary number of scalar fields, they do
not. The same is true for the models considered in [20].
It therefore remains an important open problem to find a
suitable supergravity model or prove that no such model
exists.
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