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Gott Time Machines, BTZ Black Hole Formation, and Choptuik Scaling
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We study the formation of Bañados-Teitelboim-Zanelli black holes by the collision of point particles.
It is shown that the Gott time machine, originally constructed for the case of vanishing cosmological
constant, provides a precise mechanism for black hole formation. As a result, one obtains an exact
analytic understanding of the Choptuik scaling.
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In [1], a precise mechanism was presented for the pro-
duction of closed timelike curves (CTC’s). In particular,
the spacetime of two point particles with mass and boost
parameters a and j, in �2 1 1�-dimensional spacetime
with vanishing cosmological constant L, was shown to
produce CTC’s if the inequality, sin a

2 coshj . 1, is sat-
isfied. In [2,3], this Gott time machine was analyzed in
terms of the group theoretic approach to point particles [4].
One essential feature of this approach is that the point par-
ticle spacetime is obtained via a suitable identification by
an elliptic (timelike) generator of the isometry group. It
was demonstrated in [2,3] that the effective two-particle
generator (the Gott time machine) becomes hyperbolic
(spacelike) precisely when the Gott condition is satisfied.
Various arguments were then presented to ensure that such
CTC’s do not arise in physically acceptable spacetimes
[2,3,5–7]. The possibility that black hole formation could
provide an escape route from the CTC’s was alluded to in
[1]. However, the absence of a black hole spacetime with
L � 0 means that this route for chronology protection is
unavailable.

It is noteworthy that in �2 1 1�-dimensional anti–de
Sitter gravity (L , 0), we do indeed have the Bañados-
Teitelboim-Zanelli (BTZ) black hole solution [8,9], for a
review see [10]. From our point of view, the most impor-
tant aspect of this black hole is that it is defined by a hyper-
bolic isometry. One may choose a fundamental region of
this hyperbolic isometry and define the black hole space-
time by identification of the region’s boundaries by the
isometry. Equivalently, the black hole spacetime may be
defined as the quotient of three-dimensional anti–de Sitter
space �adS3� by the cyclic group generated by the hyper-
bolic isometry [9]. In this paper, we show that the Gott
time machine, suitably extended to the anti–de Sitter case,
is precisely the mechanism for BTZ black hole formation
in particle collisions. If the Gott condition is satisfied, the
effective two-particle generator becomes hyperbolic. Thus,
one can immediately identify the resulting quotient space-
time as the BTZ black hole. This understanding of black
hole formation via the Gott time machine is based simply
on the observation that the formation of the black hole is
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effected by the transition from two elliptic (particle) gen-
erators to a hyperbolic (black hole) generator.

Having understood BTZ black hole formation at the al-
gebraic level, it is of interest to see if this sheds light on
the origin of Choptuik scaling [11]; for a review see [12].
Interest in this critical phenomenon is centered around the
fact that the threshold for black hole formation in the space
of initial data has a simple structure. In particular, the
black hole parameters exhibit universal power-law scaling
behavior. We demonstrate that the natural order parameter
for BTZ black hole formation is the trace of the associ-
ated generator. In this way, we gain an exact analytic un-
derstanding of Choptuik scaling in 2 1 1 dimensions. It
is then a simple matter to read off the Choptuik scaling,
which has an exponent g � 1�2.

We recall [10] that adS3 can be viewed as the group
manifold of SL�2, R�, with isometry group �SL�2, R� 3

SL�2, R���Z2. Thus, for X [ SL�2, R�, the isometry
group acts by left and right multiplication, X ! rLXrR ,
with the identification �rL, rR� � �2rL, 2rR�. We shall
use the equivalent SU�1, 1� notation instead of SL�2, R�;
they are related by conjugation, which is given explicitly
in [13].

As shown in [4], the spacetime for a single static point
particle with L � 0 is obtained by removing a wedge of
deficit angle a and identifying opposite sides of the wedge.
The particle spacetime is defined via the rotation generator
with angle a,

R�a� �

µ e2ia�2 0
0 eia�2

∂
. (1)

The mass m of the particle is given by a � pm, in units
with 8G � 1, and the resulting spacetime has a naked
conical singularity.

A moving particle is obtained by boosting to the rest
frame of the particle, rotating, and then boosting back. The
corresponding boost matrix is

B�j � �

√
cosh j

2 e2if sinh j

2

eif sinh j

2 cosh j

2

!
, (2)
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where j is the boost vector with j � jj j, and f is the
polar angle. Thus, the generator for a moving particle is

T � B�j �R�a�B21�j � , (3)where

T11 � e2ia�2

∑
cosh2 j

2
2 eia sinh2 j

2

∏
,

T12 � 2i sin
a

2
e2if cosh

j

2
sinh

j

2
, (4)

T21 � T�
12, T22 � T�

11 .
Since our considerations rest in anti–de Sitter space, we
simply note that the static and moving particle spacetimes
are defined in an analogous fashion, with left and right
generators. Particle spacetimes for the nonzero cosmologi-
cal constant have been considered in [14].

To construct the Gott time machine, we consider a two-
body collision process, with particles labeled by A and
B. The effective two-particle generator is then the product
[2–4], namely, TG � TBTA. The central object of interest
to us is the trace of this generator. Using (4), it is straight-
forward to compute
1
2

TrTG � cos
aA

2
cos

aB

2
1 sin

aA

2
sin

aB

2
2 sin

aA

2
sin

aB

2

∑
cosh2

µ
jA 1 jB

2

∂
1 cosh2

µ
jA 2 jB

2

∂∏

1 sin
aA

2
sin

aB

2
cos�fA 2 fB�

∑
cosh2

µ
jA 1 jB

2

∂
2 cosh2

µ
jA 2 jB

2

∂∏
. (5)
The original Gott time machine is recovered by choosing
particles with equal masses and equal and opposite boosts,
namely, aA � aB � a, jA � jB � j, fA 2 fB � p.
We find

1
2

TrTG � 1 2 2 sin2 a

2
cosh2j . (6)

The significance of this result can be appreciated by re-
calling that the isometries of adS3 are classified according
to the value of their trace. We have

jTrT j , 2, elliptic,

jTrT j � 2, parabolic, (7)

jTrT j . 2, hyperbolic.

Thus, when the Gott condition is satisfied, we have
sin2 a

2 cosh2j . 1, and thus TG is a hyperbolic genera-
tor, and when sin2 a

2 cosh2j , 1, we have an elliptic
generator.

Armed with this observation, we are now in a position to
discuss the implications of the Gott time machine for black
hole formation. First, we recall that the conventional mass
parameter of the BTZ black hole is denoted by M, while
the point particle mass m is related by m � 2�1 2

p
2M�.

As a result, the point particle mass spectrum is 21 , M ,

0, while the black hole mass spectrum is M $ 0, with
M � 21 corresponding to adS3.

Let us first consider the static black hole case, in which
the left and right generators are taken to be equal [10].
We recall also that the isometries of adS3 are subject to
the identification �rL, rR� � �2rL, 2rR�. Thus, we may
take rL � rR � 2TG � r. The BTZ black hole is de-
fined as the quotient of adS3 by a cyclic group with a single
hyperbolic generator [9]. If the Gott condition is satisfied,
then as we have seen TG is a hyperbolic generator. Thus,
the Gott time machine results in BTZ black hole forma-
tion. The black hole mass is then given by [10,13]

1
2

Trr � coshp
p

M � 21 1 2 sin2 a

2
cosh2j � p ,

(8)
where p $ 1.
It is important to consider the defining equation of this

process, namely,

TBTA � TG . (9)

On the left-hand side, we have the input data given by the
particle mass and boost parameters a and j. The incoming
particles A and B have been set up in a symmetrical way,
with equal mass and boost parameters, and the timelike
geodesics representing their worldlines will intersect at a
given time, say t � 0. Thus, we may regard this as the
time of collision of the two particles. The product of
the particle generators represents the effective generator
of the system at this time [15]. As we have seen, the
effective generator at the time of collision is hyperbolic
if the Gott condition is satisfied. We may then interpret
Eq. (9) as defining the formation of a BTZ black hole at
time t � 0, with the value of the black hole mass fixed
by the input parameters a and j. Thus, Eq. (9) encodes
dynamical information. However, the precise details of the
motion of the particles corresponding to the generators TA

and TB prior to the collision, as well as the motion after
collision, may also be studied. Indeed, this analysis has
been performed for massless particles in [15,16].

We see from (8) that the natural order parameter for
black hole formation in �2 1 1�-dimensional anti–de Sit-
ter gravity is the trace of the generator. This takes a critical
value at the threshold for black hole formation, correspond-
ing to the critical value of the parameter p� � 1. Clearly,
p � p� corresponds to the black hole vacuum M � 0,
where the Gott generator is parabolic. Since the parame-
ter p depends on the initial data a and j, we can read
off the critical boost j for any given mass a. As an ex-
ample, taking a � p�3, we have black hole formation
when coshj $ 2. We have

p
p

M � arccoshp � ln�p 1

q
p2 2 1 � . (10)
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We stress that the above expression is an exact analytic
formula for the formation of a BTZ black hole in terms
of the input (initial) parameters a and j, equivalently p.
From this, we can immediately determine the Choptuik
scaling, by studying the behavior near p�. The mass M
and horizon length r1 are related by

p
M � r1�l, where

l is the scale of adS3. Writing p � p� 1 e, we find to
leading order

r1

l
�

p
2

p
�p 2 p��1�2. (11)

Thus, we observe a scaling factor of g � 1�2. Note that
this is indeed a universal scaling since BTZ black hole
formation always requires a hyperbolic generator. The
universal scaling value of 1�2 is simply a consequence of
the fact that the mass depends on the inverse cosh function.
We also note that the derivative of the order parameter
diverges at the critical value p�.

If the Gott condition is not satisfied, then one has an ef-
fective particle spacetime with an elliptic generator, whose
effective deficit angle is denoted by aeff. This can be ob-
tained by continuation of (8) to negative M values. We
find,

1
2

Trr � cos p
p

2M � 21 1 2 sin2 a

2
cosh2j � p ,

(12)

where now p , p�. Once again, we have an exact analytic
expression for the mass parameter on the other side of the
transition, and of course the Choptuik scaling exponent is
again g � 1�2, with

aeff � 2p 2 2
p

2 �p� 2 p�1�2. (13)

While the Choptuik scaling is evident near the black hole
threshold, we stress that in this model we have recourse to
the exact analytic expression (10).

To obtain the spinning BTZ black hole, we simply need
to have independent left and right generators, and these
are also given in terms of the Gott generators. Taking
aA � aB � a, fA 2 fB � 0, we find the left generator
rL � 2TG , with

1
2

TrrL � cosh

∑
p

l
�r1 2 r2�

∏

� 21 1 2 sin2 a

2
cosh2

µ
jA 2 jB

2

∂
� p̃ .

(14)

For the right generator, we choose aA � aB � a, fA 2

fB � p , with rR � 2TG , leading to

1
2

TrrR � cosh

∑
p

l
�r1 1 r2�

∏

� 21 1 2 sin2 a

2
cosh2

µ
jA 1 jB

2

∂
� p .

(15)

The input data for particles A and B is no longer symmet-
ric, but nevertheless rL and rR both become hyperbolic if
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the input parameters a, jA, jB satisfy the appropriate Gott
conditions. In the above, we have introduced the parame-
ters r6 which denote the locations of the inner and outer
horizons [10]. They are related to the mass M and angular
momentum J by M � �r2

1 1 r2
2��l2, J � 2r1r2�l. In

this case, we obtain Choptuik scaling for both mass and
angular momentum in the form

r1 2 r2

l
�

p
2

p
� p̃ 2 p̃��1�2,

r1 1 r2

l
�

p
2

p
�p 2 p��1�2.

(16)

As pointed out in [17], the Euclidean BTZ black hole is
a geometrically finite Kleinian manifold with the topology
of a solid torus. In essence, this allows one to invoke a
theorem of Sullivan [18,19] to establish a no hair theorem
for the Euclidean black hole. As a result, the black hole
and its hyperbolic generators are described by at most two
parameters. Assuming that the continuation to Lorentzian
signature does not induce additional parameters, one con-
cludes that the BTZ black hole is described by mass and
angular momentum only. One can consider many-body
extensions of the Gott time machine. By the above rea-
soning, these will lead to the formation of a spinning BTZ
black hole, if there are Gott conditions which produce in-
dependent left and right hyperbolic generators.

In conclusion, we have shown that the original Gott time
machine provides a precise mechanism for BTZ black hole
formation in particle collisions. The problems of CTC’s
and chronology protection [20] are overcome by the cre-
ation of the black hole horizon, as soon as the Gott con-
dition is satisfied. This is indeed a satisfying scenario.
We mention that the recent study of BTZ black hole for-
mation from massless particle collisions [15,16] is based
on the lightlike analog of the Gott time machine [21] and
thus is also guaranteed to produce the hyperbolic generator
necessary for BTZ black hole formation. The holographic
description of this creation process has been investigated
within the anti–de Sitter/conformal field theory correspon-
dence in [22]. A Gott time machine in anti–de Sitter space
was also studied in [23]. By definition, the BTZ black hole
is defined as the quotient spacetime of a hyperbolic gen-
erator. Thus, irrespective of which type of matter is used
to produce such a black hole, the ultimate result is that the
mass of the black hole is defined via the trace of the hy-
perbolic generator. Hence, Choptuik scaling with a critical
exponent g � 1�2 will always be present. Indeed, this ex-
ponent was observed for collapsing dust shells in [24].
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