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The exact eigenspectra and eigenstates of spin-1 and spin-2 Bose-Einstein condensates (BECs) are
found, and their response to a weak magnetic field is studied and compared with their mean-field
counterparts. Whereas mean-field theory predicts the vanishing population of the zero magnetic-
quantum-number component of a spin-1 antiferromagnetic BEC, the component is found to become
populated as the magnetic field decreases. The spin-2 BEC exhibits an even richer magnetic response
due to quantum correlations among three bosons.

PACS numbers: 03.75.Fi, 05.30.Jp
Bose-Einstein condensates (BECs) of alkali-metal atoms
have internal degrees of freedom due to the hyperfine spin
of the atoms. These degrees of freedom are frozen in a
magnetic trap, but an optical trap liberates them to allow
BEC to be in a superposition of magnetic sublevels [1].
BEC is therefore described by a vector rather than scalar
order parameter. A new feature in this BEC system as
compared to superfluid 3He is the fact that its response to
an external magnetic field is dominated by electronic rather
than nuclear spin, and hence the response is much stronger
than that of superfluid 3He. This opens up possibilities
of manipulating the magnetism of superfluid vapors. Ob-
servation of spin domains by an MIT group [2] offers a
remarkable example of such manipulations. While the ex-
periments reported so far achieved only the spin-1 BEC,
the spin-2 BEC appears feasible by using the F � 2 mul-
tiplet of bosons such as 23Na, 87Rb, or 85Rb.
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The mean-field theory (MFT) for describing a vectorial
BEC was developed by Ohmi and Machida [3] and by
Ho [4] by generalizing the Gross-Pitaevskii equation under
the restriction of gauge and spin-rotation symmetry; they
also used it to predict various spin textures and topological
excitations. Law et al. [5] utilized techniques developed in
quantum optics [6,7] to study many-body states of spin-1
BEC in the absence of external fields, and found that spin-
exchange collisions lead to rather complicated dynamical
behavior of BEC that MFT fails to capture. In this Letter,
we study magnetic response of spin-1 and spin-2 BECs by
explicitly constructing exact eigenspectra and eigenstates,
and compare the results with their mean-field counterparts.

We first consider a system of spin-1 identical bosons
interacting via s-wave scattering. The second-quantized
Hamiltonian of the bosons subject to a uniform magnetic
field B and in a confining potential U�r� is given by
Ĥ0 �
Z

dr
∑

h̄2
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∏
, (1)
where M is the mass of the bosons, Ĉa describes their field
operator with magnetic quantum number a � 21, 0, 1,
and c̄0 and c̄1 are related to scattering lengths a0 and a2 of
two colliding bosons with total angular momenta 0 and
2 by c̄0 � 4p h̄2�2a2 1 a0��3M and c̄1 � 4p h̄2�a2 2

a0��3M [4]. Here and henceforth, it is assumed that
repeated indices are to be summed, and that the total
number N of bosons in the system is fixed. We fur-
ther assume that the external magnetic field is weak and
jc1j ø c0 so that the coordinate wave function f�r� is in-
dependent of the spin state and solely determined by the
first three terms of Eq. (1), namely, �2h̄2=2�2M 1 U 1

c̄0�N 2 1� jfj2�f � ef. While spin domains were ob-
served in the experiments subject to a gradient magnetic
field [2] or in metastable states [8], here we assume a uni-
form magnetic field and do not consider the possibility
of phase separation. Substituting Ĉa � âaf into Eq. (1)
and keeping only spin-dependent terms, we obtain
Ĥ � �c1�2� : F̂ ? F̂ : 2pF̂z , (2)

where c1 � c̄1

R
drjfj4, : Ô : arranges the operator Ô

in normal order, and the three components F̂x,y,z of the
hyperfine-spin operator F̂ are defined in terms of 3 3 3
spin-1 matrices Fx,y,z as F̂x � �Fx�ab ây

a âb , etc. In the
following discussions we assume that p � gmBB . 0.

Exact energy eigenstates and eigenvalues of Hamil-
tonian (2) can be constructed as follows. We introduce
an operator Ây � ��ây

0 �2 2 2â
y
1 â

y
21��

p
3 which creates

a pair of bosons in the spin-singlet state when operated
on the vacuum, and define a set of states jN2, F, Fz� as
jN2, F, Fz� � Z21�2�Ây�N2�F̂2�F2Fz �ây

1 �F jvac�, where
Z is the normalization constant and F̂2 is the lowering
operator for Fz . Since Ây commutes with F̂2 and F̂z ,
jN2, F, Fz� is the simultaneous eigenstate of N̂ , F̂2,
and F̂z , with total number of bosons N � F 1 2N2,
total spin F, and magnetic quantum number Fz . This
© 2000 The American Physical Society
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state is thus an energy eigenstate of Ĥ with energy
eigenvalue

E � �c1�2� �F�F 1 1� 2 2N� 2 pFz . (3)
The number of possible states jN2, F, Fz� for a fixed N is
obtained as the coefficient of xN of the generating functionP

N2,F,Fz
xN �

P
N2,F�2F 1 1�x2N21F � �1 2 x�23, and

is given by �N 1 1� �N 1 2��2. Since this number coin-
cides with that of linearly independent states for a system
of N spin-1 bosons, i.e., N12C2, the set �jN2, F, Fz�	
forms a complete orthonormal basis.

The ground state is obtained by minimizing Eq. (3) with
N held fixed. When c1 , 0, it is a ferromagnetic state in
which all bosons occupy the m � 1 state, in agreement
with the prediction of MFT [2]. When c1 . 0, jN2 �
�N 2 F��2, F, Fz � F� is the exact ground state for

F 2 1�2 , p�c1 , F 1 3�2 . (4)
That is, magnetization increases stepwise, taking the
values F � N 2 2N2 with the step size DF � 2 as the
magnetic field increases. In contrast, MFT implies [2]
that magnetization increases linearly with the magnetic
field as Fz 
 �gmB�c1�B. Both theories, however, predict
the same average slope. The difference between the exact
ground state energy E and the minimum energy EM in
MFT is E 2 EM 
 2c1�N 2 F� �2N 1 F��2N [9],
which is of the order of the antiferromagnetic interaction
energy between one particular particle and the rest of the
system.

From the form of the ground states jN2, F, Fz � F� ~

�Ây�N2�ây
1 �F jvac�, we may say that increasing the magnetic

field breaks singlet “pairs” one by one, which results in
the stepwise increase of magnetization. These pairs are in
some sense analogous to Cooper pairs of electrons or 3He,
but there is a remarkable difference. In the case of Cooper
pairs, the state is symmetric only under the permutations
that do not break any pairs. On the other hand, in the
present case the state is symmetric for any permutations of
constituent particles.

An observable that makes a striking distinction from
MFT is the population n0 of the m � 0 Zeeman sublevel,
which is predicted to be zero in MFT [2]. For the exact
ground state, the expectation of n0 is calculated to be

n̄0 � �ây
0 â0� �

2N2

2F 1 3
�

N 2 F
2F 1 3

. (5)

The nonzero value of n̄0 makes a sharp distinction from the
prediction of MFT. When 1 ø F ø N , n̄0 is inversely
proportional to the magnetic field as n̄0 
 c̄1r��2gmBB�,
where r � N

R
drjfj4 is the average number density

of BEC. Note that when B fi 0, n̄0�N is finite only
in the mesoscopic regime, and vanishes in the limit
N ! `. For sodium atoms in the F � 1 state, where
c̄1�mB 
 10219 cm3 G, experiments of Ref. [1] achieved
r 
 1015 cm23 in an optical dipole trap. From these
values, we see, for example, that in order to observe n̄0
of the order of 103, a small magnetic field of the order of
1027 G is required.
The rapid decrease of n̄0 as a function of F can be as-
cribed to the indistinguishability of bosons. If all particles
were distinguishable, the state could be written as C �QN2

i�1 C2i21,2i
QN22N2

j�1 j1�2N21j , where Ci,j is the spin-
singlet state for particles i and j. There are N2 singlet
pairs so that the m � 0 population would be �N 2 F��3,
which decreases only linearly with F. The wave function
of a Bose system is obtained by the symmetrization
of C. Adding bosons in the m � 1 state increases
the relative probability amplitudes having large m � 1
occupation numbers. This is nothing but the bosonic
enhancement and may be interpreted as a consequence
of the constructive interference among the permuted
terms. The expectation value of the m � 0 population
thus decreases rapidly towards the MFT value of zero
with the increasing magnetic field, as can be seen from
Eq. (5).

We next consider BEC of spin-2 bosons. Bose sym-
metry requires that the total angular momentum of two
colliding bosons is restricted to 0, 2, and 4, so that the inter-
action Hamiltonian which describes binary collisions via
the s-wave scattering is generally written as V̂ � g4P̂4 1

g2P̂2 1 g0P̂0, where P̂F�F � 0, 2, 4� denotes the projec-
tion operator for the total angular momentum F [4], gF

is related to scattering length aF by gF � 4p h̄2aF�M,
and we have omitted the coordinate delta function describ-
ing the short-range nature of the interaction. Using P̂4 1

P̂2 1 P̂0 � 1̂ and f̂i ? f̂j � 4P̂4 2 3P̂2 2 6P̂0 (i and j
label particles), V̂ is rewritten as V̂ � c̄0 1 c̄1f̂i ? f̂j 1

c̄2P̂0, where c̄0 � �3g4 1 4g2��7, c̄1 � �g4 2 g2��7, and
c̄2 � �3g4 2 10g2 1 7g0��7.

To derive the second-quantized form of the Hamilto-
nian, it is convenient to introduce a new operator Ŝ1 �
�ây

0 �2�2 2 â
y
1 â

y
21 1 â

y
2 â

y
22. This operator creates, if ap-

plied to the vacuum, a pair of bosons in the spin-singlet
state. This pair, however, should not be regarded as a single
composite boson because Ŝ1 does not satisfy the Bose
commutation relations. The operator Ŝ1 instead satis-
fies the SU�1, 1� commutation relations if we define Ŝ2 �
Ŝ

y
1 and Ŝz � �2N̂ 1 5��4, namely, �Ŝz , Ŝ6� � 6Ŝ6 and

�Ŝ1, Ŝ2� � 22Ŝz ; the minus sign in the last equation is
the only distinction from the usual spin commutation rela-
tions. Accordingly, the Casimir operator Ŝ 2 that commutes
with Ŝ6 and Ŝz should be defined as Ŝ 2 � 2Ŝ1Ŝ2 1

Ŝ 2
z 2 Ŝz . The requirement that Ŝ 2

z 2 Ŝz 2 Ŝ 2 must be
positive semidefinite leads to the allowed combinations
of eigenvalues �S �S 2 1�,Sz	 for Ŝ 2 and Ŝz such that
S � �2N0 1 5��4 �N0 � 0, 1, 2, . . .� and Sz � S 1 N2
�N2 � 0, 1, 2, . . .�. Here we introduced new quantum num-
bers N2 and N0, where the operator Ŝ1 raises N2 by one
and the relation N � 2N2 1 N0 holds. We may thus inter-
pret N2 as the number of spin-singlet pairs, and N0 as that
of the remaining bosons. Noting that the second-quantized
form of P̂0 is written as 2Ŝ1Ŝ2�5, the second-quantized
form of the spin-dependent part of the Hamiltonian can be
written as
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Ĥ � �c1�2� : F̂ ? F̂ : 1�2c2�5�Ŝ1Ŝ2 2 pF̂z , (6)

where ci � c̄i

R
drjfj4.

We first discuss MFT with a fixed total num-
ber of bosons, and define a state in which all
bosons are in the same single-particle state as
�N!�21�2�

P
a za ây

a�N jvac�, where
P

a jzaj
2 � 1. Noting

that �ây
a0 â

y
b0 âb âa� � N�N 2 1�z �

a0z
�
b0zbza , the energy

EM of the state is written as

EM � N�N 2 1�
∑µ

c1

2

∂
� f̂ �2 1

µ
2c2

5

∂
s2

∏
2 Np� f̂z� ,

(7)

where � f̂ �2 � � f̂z�2 1 j2�z2z
�
1 1 z21z

�
22� 1

p
6 z1z

�
0 1

z0z
�
21j

2, � f̂z� � 2�jz2j
2 2 jz22j

2� 1 jz1j
2 2 jz21j

2, and
s2 � jz 2

0 �2 2 z1z21 1 z2z22j
2 [9]. [An MFT that as-

sumes coherent states with amplitudes �
p

N za	 for the
ground state is obtained by replacing the terms ci�N 2 1�
in EM by ciN .] The ground state and its magnetization
in MFT are obtained by minimizing EM , and our results
are summarized as follows. When c2 . 0 and c1 . 0,
the term including c2 vanishes �s2 � 0� for the minimized
state, and the magnetization increases linearly with the
magnetic field as Fz 
 �gmB�c1�B. Any Zeeman sublevel
can take nonzero population in this case. When c2 , 0
and 20c1 1 jc2j . 0, the c2 term contributes to Fz , but
it amounts only to replacing c1 in the expression of Fz

above with c1 1 jc2j�20. This case is quite similar to the
spin-1 case, and only m � 62 levels are populated. In
other regions of the parameters c1 and c2, the ground state
is ferromagnetic.

Exact energy eigenstates and eigenvalues of Hamilto-
nian (6) can be obtained as follows. Because operators
Ŝ6 are invariant under any rotation of the system, they
commute with F̂2 and F̂z . The energy eigenstates can
thus be classified according to quantum numbers N2 and
N0, total spin F, and magnetic quantum number Fz . We
thus denote the eigenstates as jN2, N0, F, Fz , l�, where
l � 1, 2, . . . , gN0,F is included to label degenerate states.
The energy eigenvalue for this state is

E � �c1�2� �F�F 1 1� 2 6N� 1 �c2�10� �N 2 N0�

3 �N 1 N0 1 3� 2 pFz , (8)

where we used 2N2 1 N0 � N . The degeneracy gN0,F can
be calculated from generating function [9]

X
N0,F

gN0,FxN0yF �
1 2 xy 1 x2y2

�1 2 xy2� �1 1 xy� �1 2 x3�
. (9)

The total spin F can take integer values in the range
0 # F # 2N0 except for some forbidden values. That is,
F � 1, 2, 5, 2N0 2 1 is not allowed when N0 � 3k�k [
Z�, and F � 0, 1, 3, 2N0 2 1 is forbidden when N0 �
3k 6 1.

It is convenient to consider two cases separately depend-
ing on the sign of the parameter c2 for the minimization of
Eq. (8).
1068
(a) c2 . 0.—The ground state is jN2 � 0, N0 �
N , F, Fz � F, l� with F taking the value closest to
p�c1 2 1�2. The magnetization Fz � F can take integer
values in the range 0 # F # 2N except for the forbidden
values described above.

The spin correlations in these ground states are rather
complicated in comparison with the spin-1 case. This is
because the condition �Ŝ1Ŝ2� � 0 implies that the spin
correlation between any two particles must avoid the sin-
gletlike correlation. Except for this constraint, the spin
correlation may be reduced to a combination of two- and
three-particle correlations. Let us define the operator Â

�n�y
F

such that it creates n bosons in the state with total spin F
and Fz � F when applied to the vacuum. Consider a set
of unnormalized states,

jn12, n22, n30, n33� � ˆ̄P0�ây
2 �n12 �Â�2�y

2 �n22�Â�3�y
0 �n30

3 �Â�3�y
3 �n33 jvac� , (10)

with n12, n22, n30 � 0, 1, 2, . . . , and n33 � 0, 1. The
operator ˆ̄P0 is the projection to the kernel of Ŝ2,
which ensures �Ŝ1Ŝ2� � 0 for these states. It is easy
to see that jn12, n22, n30, n33� are energy eigenstates
with N2 � 0, N0 � n12 1 2n22 1 3n30 1 3n33, and
F � Fz � 2n12 1 2n22 1 3n33. Note that the states
belonging to the same eigenvalue are not necessarily
mutually orthogonal. A further analysis [9], however,
shows that these states are linearly independent, and
the degeneracy coincides with gN0,F . The set (10) thus
forms a complete basis of the subspace spanned by
�jN2 � 0, N0, F, Fz � F, l�	. The form in (10) provides
an intuitive explanation for the forbidden values of F. For
example, F � 0 is possible only when N0 is a multiple
of 3 because the singlet state is formed by only three
particles.

(b) c2 , 0.—The ground state should satisfy Fz � F.
To determine the remaining parameters �N0, F	, we first
separate E into the part that depends on F and l � 2N0 2

F, and the part that depends only on N , namely,

E �
�20c1 1 jc2j�

40
g�F, l� 2 3c1N 2

jc2j

10
N�N 1 3� ,

(11)

where g�F, l� � F2 1 �1 1 c�5 1 2l� 2 p0�F 1

cl�l 1 6�, c � jc2j��20c1 1 jc2j�, and p0 �
40p��20c1 1 jc2j�.

When 20c1 1 jc2j , 0, the ground state is ob-
tained by maximizing g�F, l�. Suppose first that
N is even. Since g�F, l� is a decreasing function
of l in this case, the maximum should be either
g�0, 0� � 0 or g�2N , 0� � 2N�2N 1 1 1 5c 2 p0�.
The ground state is thus �N0, F	 � �0, 0	 if
40p , 5jc2j 2 �2N 1 1� j20c1 1 jc2 k, and �N0, F	 �
�N , 2N	 otherwise. When N is odd, �N0, F	 � �0, 0	
is not allowed, and we must compare g�0, 6�, g�2, 0�,
and g�2N , 0�. The ground state is �N0, F	 � �1, 2	
if 40p , 5jc2j 2 �2N 1 3� j20c1 1 jc2 k, and
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�N0, F	 � �N , 2N	 otherwise. These results in-
dicate that in the small parameter region of
25jc2j�2N & 20c1 1 jc2j , 0, magnetization of
the ground state jumps from 0 or 2 to 2N . Such a large
discontinuity does not appear in MFT with a linear Zee-
man potential. (However, in the presence of a quadratic
Zeeman potential, such a jump occurs also in MFT [2].)

When 20c1 1 jc2j . 0, the ground state is obtained
by minimizing g�F, l�. The function g�x, 0� for real x
is minimal when x � x0 � �p0 2 5c 2 1��2. Since
l � 0 is allowed only when F � k0 � 2N 2 4k with k
being a non-negative integer, it is sufficient to compare
the states with �N0, F	 � �k0�2 2 2, k0 2 4	, �k0�2, k0 2

3	, �k0�2, k0 2 2	, �k0�2 1 2, k0 2 1	, �k0�2, k0	 when x0
is in the region �k0 2 4, k0�. The ground state is thus
�N0, F	 � �k0�2, k0	 if

max�21 2 c�2k0 2 1�, 210c�k0 1 4�	 , p0 2 2k0

, min�2 1 2c�3k0 1 19�, 3 1 c�2k0 1 17�	 ,
(12)

�N0, F	 � �k0�2 1 2, k0 2 1	 if

22 1 6c�k0 1 7� , p0 2 2k0 , 210c�k0 1 4� , (13)

�N0, F	 � �k0�2, k0 2 2	 if

max�25 1 c�2k0 1 9�, 24 2 2c�k0 2 2�	 , p0 2 2k0

, min�22 1 6c�k0 1 7�, 21 2 c�2k0 2 1�	 ,

(14)

and �N0, F	 � �k0�2, k0 2 3	 if

26 1 2c�3k0 1 7� , p0 2 2k0 , 24 2 2c�k0 2 2� .
(15)

These results indicate how magnetization increases with
the applied magnetic field. When Fz & 1�8c, Fz takes
all integer values. In the region 1�8c & Fz & 1�4c,
Fz skips the values Fz � 2N 2 4k 2 1. When
1�4c & Fz & 1�c, Fz � 2N 2 4k 2 3 are further
skipped, and Fz takes every other integer values. When
1�c & Fz , Fz � 2N 2 4k are the only allowed values,
so Fz increases by 4 at a time.

The reduced form of the states mentioned
above is also helpful to illustrate this behavior.
The states with F � k0 2 4, k0 2 3, k0 2 2, k0 2

1, k0 can be written as �Â�2�y
0 �k11�ây

2 �k0�222jvac�,
�Â�2�y

0 �k�ây
2 �k0�223Â

�3�y
3 jvac�, �Â�2�y

0 �k�ây
2 �k0�222Â

�2�y
2 jvac�,

�Â�2�y
0 �k21�ây

2 �k0�223Â
�2�y
2 Â

�3�y
3 jvac�, �Â�2�y

0 �k�ây
2 �k0�2jvac�,

respectively. As the energy cost required to break a
singlet pair increases, the transitions accompanied by
this breakage require a stronger field and are eventually
suppressed.

Contrary to MFT, the exact ground state shows nonzero
population in the m � 0, 61 levels. Since the expres-
sions of the exact results for these populations are lengthy,
we show only the leading terms under the condition 1 ø
n12 ø N2. Surprisingly, the populations are considerably
different for the types of possible ground states, namely,
�Â�2�y

0 �N2 �ây
2 �n12�Â�2�y

2 �n22�Â�3�y
3 �n33 jvac� with n22 � 0, 1 and

n33 � 0, 1. The results are �ây
1 â1� 
 �ây

21â21� 
 N2�1 1

n33��n12 and �ây
0 â0� 
 N2�1 1 2n22��n12. These results

indicate that the populations in the m � 0, 61 states are
very sensitive to the combination of the spin correlations,
and a very small difference in magnetization leads to large
changes in the populations, by a factor of 2 or 3. The origin
of this drastic change is the bosonic enhancement caused
by the term �ây

2 �2â
y
21 in Â

�3�y
3 and the term â

y
2 â

y
0 in Â

�2�y
2 .

To summarize, we examined magnetic response of
spin-1 and spin-2 BECs by deriving exact eigenstates
of each Hamiltonian. The response is stepwise and the
spin-1 BEC shows the step of 2 units reflecting formation
or destruction of singletlike pairs. In the spin-2 case, the
spin correlations among three particles appear, leading to
various step sizes ranging from 1 to 4 units. In a small
parameter region, magnetization jumps from almost zero
to the maximum of the order of N . Some Zeeman-level
populations, which are predicted to be zero in MFT, are
found to be nonzero when the magnetic field is small.
These populations decrease rapidly with the increasing
magnetic field, which can be understood as a consequence
of bosonic enhancement. The bosonic enhancement also
serves as an “amplifier” of a small change in spin corre-
lations because it leads to large changes in Zeeman-level
populations in the spin-2 BEC.
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Note added.—After the completion of this work, we be-
came aware of a preprint (cond-mat/9905339) by Ho and
Yip who obtained similar results for the spin-1 case, and
one (cond-mat/9908018) by Ciobanu et al. who discussed
MFT for the spin-2 case.
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