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Anomalous Spreading of Power-Law Quantum Wave Packets
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We introduce power-law tail quantum wave packets. We show that they can be seen as eigenfunctions
of a Hamiltonian with a physical potential. We prove that the free evolution of these packets presents
an asymptotic decay of the maximum of the wave packets which is anomalous for an interval of the
characterizing power-law exponent. We also prove that the number of finite moments of the wave packets
is a conserved quantity during the evolution of the wave packet in the free space.

PACS numbers: 03.65.–w, 05.40.Fb
Power-law probability density functions [1] are receiv-
ing a lot of attention in different research fields [2,3]. Sto-
chastic processes with power-law distributions may or may
not be characterized by a typical scale in time and/or in the
size of the random variable. One implication of the ab-
sence of a typical scale is the divergence of the variance of
the distribution. Examples of phenomena without a typi-
cal scale are observed in physical systems at the criti-
cal state [4], in self-organized [5], and in complex systems
[6]. Considering few-body quantum systems: (i) scale
free power-law processes have been observed in a quantum
system by investigating and modeling experiments of ve-
locity selective coherent population trapping [7,8] and (ii)
the power-law temporal growth of the moments of a wave
packet has been investigated in quantum systems with frac-
tal energy spectra and eigenfunctions such as the Harper
model [9,10]. Spatial power-law wave functions have not
been considered within the framework of nonrelativistic
quantum mechanics. The probabilistic interpretation of the
wave function and the recent results on power-law distri-
butions observed in physical systems motivate us to in-
vestigate the properties of power-law wave functions in
quantum mechanics. In this Letter we consider quantum
wave packets with power-law tails. Specifically we fo-
cus on (i) their physical properties, namely, the uncertainty
product, the associated energy, and the momentum distri-
bution, and (ii) the spreading of such quantum wave pack-
ets during the free evolution.
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We define as power-law tail wave packet (PLTWP) a
wave function c�x� describing a nonrelativistic spinless
particle in one dimension, which decreases with x as

jc�x�j � jxj2a . (1)

This class of wave packets is square integrable only if
a . 1�2. For the sake of simplicity, in this Letter we
assume that wave function is real, positive, and even. The
study of quantum wave packets with wave function real or
complex, uneven, and with zeros is presented elsewhere
[11]. One of the properties of power-law distributions is
that only a finite number of moments of the variable are
finite. In quantum theory this implies that the moments
of position operator �x̂m� with m $ 2a 2 1 are infinite.
The lack of finite moments of x has a counterpart in the
properties in k � 0 of Fourier transform g�k� � FT�c�x��
which gives the amplitude probability distribution of mo-
mentum. We note that when n , a # n 1 1, only the
first n 2 1 derivatives of g�k� exist in k � 0. In the
special case 1�2 , a # 1 the Fourier transform g�k� is
infinite in k � 0. The behavior of g�k� when k 	 0 is
described by two different series expansions depending on
the value of a. Specifically, when a is not an odd integer
number

g�k� 	 a0 1 a2k2 1 · · · 1 a2nk2n 1 bjkja21 1 o�jkja� ,

(2)
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where 2n is the largest even integer number smaller than
a 2 1. When a � 2n 1 1 the series expansion is

g�k� 	 a0 1 a2k2 1 · · · 1 a2nk2n 1 bk2n log jkj 1 . . . .

(3)

The case a � 1 has a logarithmic divergence in k � 0.
In spite of this behavior we point out that all moments of

the momentum operator (including the kinetic energy) of
the particle �p̂m� (m $ 1) are finite. In fact, a property
of Fourier transform is

FT�c �m��x�� � �2ik�mg�k� , (4)

where c �m��x� indicates the mth derivative of c�x�.
This property is valid under the hypothesis that
limjxj!` c �r��x� � 0 for r � 0, 1, . . . , m 2 1. Since
the tails behave as jxj2a2m, c �m��x� is absolutely inte-
grable. By using the Riemann-Lebesgue lemma [12], one
can conclude that limjkj!` kmg�k� � 0 for all m.

A consequence of the finiteness of momentum moments
is that the uncertainty in momentum Dk is always finite for
PLTWP. As mentioned above, when a #

3
2 the second

moment of the position operator and thus the root mean
square deviation Dx of position are infinite. Therefore
these kinds of wave packets have an uncertainty product
DxDk which is infinite when a #

3
2 . This physical prop-

erty reflects the fact that for PLTWP with a #
3
2 a typical

scale exists in momentum space whereas the wave packet
is scale-free in space.

Can a PLTWP be an eigenfunction of a Hamiltonian?
To answer this question we note that each PLTWP can be
related to a specific physical potential. The PLTWP is then
an eigenfunction of the corresponding Hamiltonian. The
equation providing the potential associated with a particle
described by a wave function c�x� is [13]

U�x� � E 1
h̄2

2M
1

c�x�
d2c�x�

dx2 , (5)

where E is the eigenvalue of energy and M is the mass
of the particle. The shape of the potential depends on the
local properties of the wave function. From Eqs. (1) and
(5) it is immediate to conclude that the potential associated
with PLTWP behaves asymptotically as x22 [14]. As an
illustrative example we present PLTWPs defined as

c�x� �
N

�x2 1 g2�a�2 , (6)

where N is a suitable normalization constant and g is
a scale parameter. The above family of quantum wave
packets is related to the Student’s t distribution when a is
integer. The associated potential is

U�x� �
h̄2

2M
a

x2�1 1 a� 2 g2

�x2 1 g2�2 , (7)

and is shown in Fig. 1. In this figure the eigenvalue E is
set equal to zero. The potential is a single well potential
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FIG. 1. Potential profile, Eq. (7), associated with the class of
power-law tail wave packets of Eq. (6). Here we show a region
of a values ranging from the minimal allowed value a � 1�2
(excluded) to the value a � 4. In the entire interval a . 1�2,
the potential does not show any pathological behavior. In our
calculation we set g � 1. The potential U�x� is given in units of
h̄2�2M. The PLTWP is the eigenfunction of the corresponding
Hamiltonian with eigenvalue E � 0.

with two symmetrical confining barriers. The potential
reaches a maximal value and then decreases asymptotically
as U�x� � x22. A general property of this potential is
that by increasing the value of a the depth of the potential
well increases. From Fig. 1 it is clear that the associated
potential does not present anomalies of any sort.

Hereafter we consider the properties of a PLTWP in
the simplest case of dynamical evolution, namely, the free
wave evolution. We assume that at t � 0 the wave packet
in the free space has the asymptotic properties of Eq. (1).
We focus our attention on the spreading of the wave packet.
During the dynamical evolution in free space the wave
function at time t is given by

c�x, t� �
1

p
2p

Z `

2`
g�k�ei�kx2 h̄tk2�2M� dk . (8)

We briefly recall that in the case of a Gaussian wave packet
the amount of spreading of the wave packet can be quanti-
fied either by considering the time dependence of the posi-
tion variance or by determining the time dependence of the
maximum of the wave function. To quantify the amount
of spreading of a free wave packet in the same way for
PLTWP with finite or infinite variance we choose to fo-
cus our attention on the asymptotic behavior in time of the
wave function in a specific position (for example, x � 0).
In the Gaussian case, the variance of jc�x, t�j2 is asymp-
totically proportional to t2 and the maximum of the wave
function jc�0, t�j2 decreases as t21 asymptotically. We
will show in the following that this asymptotic behavior
observed for Gaussian quantum packets is not universally
observed in the free evolution of a quantum wave packet.

We consider here the free evolution of the maximum of
the packet, which is described by Eq. (8) with x � 0. It
is possible to give an asymptotic expansion in time t of
integral of Eq. (8) using the phase stationary method (see,
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for example, [15]). This method shows that the asymptotic
expansion of c�0, t� is determined by the dominant term
of series expansion about the origin (k � 0) of g�k� and
by the function 2h̄tk2�2M. The first term of the series
expansion about k � 0 of g�k� is g�k� 	 Qjkjl21 for any
value of a fi 1. By using the phase stationary method
[15], we know that when 0 , l , 2 it is possible to give
an asymptotic expansion of integral of Eq. (8) with x � 0
in the form

c�0, t� �
1

p
2p

e2ipl�4QG

µ
l

2

∂
1

bl�2 , (9)

where b � h̄t�2M. If g�k� has a finite nonvanishing
limit as k goes to zero, then l � 1 and we conclude that
the maximum of the packet decreases asymptotically in
time as 1�

p
t. This is the case, for example, of Gaussian

wave packets cited above and, in general, of all common-
est wave packets with finite Fourier transform in k � 0.
From Eqs. (2), (3), and (9) we conclude that this is also the
case of PLTWP with a . 1. These packets show a cus-
tomary asymptotic dynamics of the maximum. PLTWPs
with 1�2 , a , 1 show a different behavior. In fact, in
these cases g�k� diverges in k � 0 as jkja21 and, as a con-
sequence, l � a , 1. Hence, from Eq. (9) we conclude
that the maximum decreases asymptotically as t2a�2. This
is a maximum decrease, which is anomalous and slower
with respect to the decrease observed in customary wave
packets. The t21�2 behavior observed in Gaussian wave
packets is interpreted in terms of the time evolution of a
group of classical particles with a momentum dispersion
Dp. A similar simple picture cannot explain the behavior
observed for PLTWPs with a , 1 [16].

To illustrate the process of convergence of different
wave packets to the expected asymptotic behavior we cal-
culate the time evolution of the amplitude of wave packet
at x � 0 for three different cases. Specifically we consider
a Gaussian wave packet and two PLTWPs of the class de-
fined by Eq. (6) with a � 3 and a � 0.75. In Fig. 2 we
show the numerical estimate of jc�0, t�j. In the figure it is
clear that the Gaussian and the PLTWP with a � 3 soon
converge to the usual 1�

p
t asymptotic behavior, whereas

the PLTWP with a � 0.75 slowly converges to the anoma-
lous asymptotic behavior of 1�ta�2 � 1�t0.375.

The case a � 1 cannot be handled with the phase sta-
tionary method because of logarithmic divergence of g�k�
in k � 0. Although we are not able to provide a general
answer for the case a � 1, we are able to determine the
asymptotic behavior in the specific case of a packet de-
scribed by Eq. (6) with a � 1. For such a wave packet,
the maximum decreases as 1�

p
t.

In order to obtain a more complete description of the
free wave spreading, we consider the time evolution of the
tails of the packet. We prove that the free wave packet evo-
lution of a PLTWP conserves the tails. More precisely, if at
t � 0 the dominant term of asymptotic expansion of c�x�
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FIG. 2. Log-log plot of the time evolution of the wave packet
amplitude at x � 0 for three different wave packets. The usual
asymptotic behavior t21�2 is observed for the Gaussian (di-
amond) and for the PLTWP defined by Eq. (6) with a � 3
(square). The anomalous decay predicted for PLTWP with
1�2 , a , 1 is observed for the PLTWP defined by Eq. (6)
with a � 0.75 (circle). To estimate the degree of convergence,
we also show the asymptotic behaviors predicted in the two cases
as straight lines. The dashed line indicates the t21�2 behavior
and the solid line shows the t20.375 behavior. In our calculation
we set g � 1, h̄�2M � 1 and we chose the value of Dx of the
Gaussian wave packet equal to the same quantity of the PLTWP
with a � 3 at t � 0.

is cjxj2a , at each subsequent time the asymptotic expan-
sion of c�x, t� will be dominated by cjxj2a . In this sense,
the free evolution cannot change the asymptotic proper-
ties of the packet. We can visualize this property dividing
the whole set of PLTWPs in classes such as each class is
characterized by a value of a. In other words, any packet
belongs to the same class at any time during the free wave
evolution. Since a determines the number of finite mo-
ments of operator x̂, our result implies that position mo-
ments cannot became finite if they were infinite at t � 0
and vice versa. We prove our statement as follows. Let us
first consider Eq. (8) and look for the asymptotic expan-
sion in x of the FT of f�k� � g�k�e2ibk2

. The asymptotic
expansion of the FT of f�k� is determined by its singulari-
ties [12]. By following Ref. [12], we say that f�k� is singu-
lar in k0 if one cannot differentiate f�k� in k0 any number
of times. From properties of g�k� of PLTWPs we conclude
that k � 0 is the only singularity for f�k�. In order to find
the asymptotic expansion of Eq. (8), we construct a func-
tion F�k� in such a way that f̃�k� 
 f�k� 2 F�k� has an
absolutely integrable mth derivative in an interval includ-
ing k � 0. F�k� must be a linear combination of powers
of k and product of powers of k and logk [12]. Moreover
the mth derivative of f�k� must be absolutely integrable
in an interval from a real value to infinity. If all these hy-
pothesis are verified, the FT of f�k� is equal to the FT of
F�k� plus o�jxj2m�. Depending on the specific value of
a the regularizing function assumes a different form. In
spite of this, our results do not depend on the specific value
1063
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of a. For the sake of simplicity, we present here the case
with 2n 1 1 , a , 2n 1 2. The demonstration of cases
for the other values of a (specifically 2n , a , 2n 1 1,
a � 2n, and a � 2n 1 1) is similar. In order to regular-
ize the (2n 1 1)th derivative of f�k� the natural choice is

f̃�k� � g�k�e2ibk2

2 bjkja21. (10)
In fact, the first 2n 1 3 derivatives of f̃�k� are absolutely
integrable in an interval including k � 0. Therefore, we
obtain the asymptotic expansion of c�x, t� as

c�x, t� � FT�F�k�� 1 o�jxj22n23�

� cjxj2a 1 o�jxj22n23� , (11)
which demonstrates our assertion.

As an illustrative example let us consider the free evolu-
tion of the PLTWP of Eq. (6) with a � 2 and g � 1. The
corresponding wave function has the form of the Cauchy
distribution and it is possible to find the c�x, t� analyti-
cally. In Fig. 3 we show the square modulus of the posi-
tive tail of the packet versus x at different times in a log-log
plot. The figure shows that the dominant term of the
asymptotic expansion, i.e., x24, is the same at any time.
The figure also shows that new terms of the asymptotic
expansion become relevant at longer times and the region
of asymptotic convergence moves towards larger values
of x.

A connection between stochastic processes and quan-
tum processes has been considered within the framework
of stochastic mechanics [17]. Here we note that the free
evolution of a quantum wave packet is closely related to a
superdiffusive (ballistic) stochastic process. When a super-
diffusive behavior is observed in classical [18–20] and
quantum [21] processes, the central limit theorem does not
apply and a general theoretical description is lacking. In
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FIG. 3. Log-log plot of the positive tail of jc�x, t�j2 for the
PLTWP of Eq. (6) with a � 2 as a function of x for different
values of the time. The bottom line refers to the case t �
0. From bottom to top the other lines describe the cases t �
104, t � 105, and t � 106, respectively. The dominance of
the leading term of the asymptotic expansion at t � 0 is also
observed for longer times at larger values of x. In our calculation
we set g � 1 and h̄�2M � 1.
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our study we obtain two general conclusions in the prob-
lem of the free evolution of a PLTWP. The first concerns
the temporal evolution of the maximum of the wave packet
(which corresponds to the probability of return to the
origin in stochastic processes). In the well-known case of
a Gaussian wave packet (which has a fractional Brownian
motion with exponent h � 1 as one of the approximately
corresponding stochastic processes [22]) the variance
is quadratic in time and the probability of return to the
origin is inversely proportional to the time. Similarly, we
find that the same behavior is asymptotically observed
for the evolution of an even and real PLTWP when the
exponent a is greater than one. Conversely, for values
of a within the interval 1�2 , a , 1 we observe an
anomalous behavior of the time evolution of the maxi-
mum of the wave packet. We are not able to interpret this
unexpected behavior on a semiclassical basis. The second
conclusion concerns the conservation during the quantum
time evolution of the number of finite/infinite moments
of the t � 0 distribution. This behavior is peculiar to
this quantum dynamics and could not be observed, for
example, in stochastic processes obeying the central limit
theorem.
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