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Exactly Solvable Quantum Model for Electrochemical Electron-Transfer Reactions
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We consider electron exchange between a metal electrode and a solvated reactant coupled to a harmonic
oscillator bath. In the wide-band approximation the time development of the occupation probability for
the reactant orbital can be calculated explicitly. From the behavior at long times we derive an expression
for the reaction rate that is valid for all strengths of the electronic interaction between the metal and
the reactant. The rate constant is related to the scattering matrix for electron exchange between a metal
substrate and a scanning tunneling microscope via an electroactive adsorbate.

PACS numbers: 82.45.+z, 73.40.–c, 82.65.– i
Electron transfer plays a fundamental role in many
physical and chemical phenomena. It is of particular
importance in electrochemistry, where it constitutes one of
two possible mechanisms for charge transfer through the
interface, the other mechanism being ion transfer. Electro-
chemical electron transfer is always coupled to solvent
modes, which can be modeled as a harmonic oscillator
bath, and often also to localized quantum modes. It
has therefore many similarities to polaron theory and to
electron tunneling through quantum dots [1] or through
electronic states in the gap of a scanning tunneling
microscope [2].

The theories of electrochemical electron-transfer reac-
tions can be classified into two groups: On the one hand,
there are classical and semiclassical theories derived from
the models of Hush [3] and Marcus [4]; these are based on
transition-state theory or its modern extensions, and per-
tain mainly to the adiabatic limit, in which the interaction
between the electrode and the reactant is strong. On the
other hand, there are quantum theories based on the work
of Levich and Dogonadze [5], which rely on perturbation
theory and therefore presume a weak interaction and hence
nonadiabatic transfer. Both classes of theories are well re-
viewed in the recent monograph by Kuznetsov [6].

Thus the two limiting cases, classical theory with strong
electronic interaction and quantum theory with weak elec-
tronic interaction, are well covered in the literature, but a
general quantum theory valid for all strengths of the elec-
tronic interaction has been missing. In this work we fill
this gap and solve an extension of the original Levich and
Dogonadze theory exactly.

We consider electron exchange between a metal elec-
trode and a reactant solvated in an electrolyte solution.
We restrict ourselves to outer-sphere electron transfer, in
which no chemical bonds are formed or broken; practi-
cally all theories are limited to that case. The electron
transfer is coupled to a phonon bath, which represents the
solvent and any local vibrational modes that interact with
the electron. The solvent modes are mostly classical, but
modes localized close to the reactant may have to be treated
by quantum mechanics [7]. The vibrational modes are
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usually quantum mechanical; i.e., their frequencies obey
the relation kBT # h̄v. As our starting point we use a
Hamiltonian which one of us had proposed as a second-
quantized form of the Levich-Dogonadze model [8]. It
consists of an electronic part, which takes the form

He � ´ana 1
X
k

´knk 1
X
k

�Vkc1
k ca 1 V �

k c1
a ck� . (1)

Here, n denotes a number operator, c1 a creation and
c an annihilation operator, and ´ an energy. The first
term with the label a describes the reactant, the second
term the metal electrons, which are labeled by their
quasimomentum k, and the last term accounts for electron
exchange between the reactant and the metal; Vk is the cor-
responding matrix element. This part of the Hamiltonian
is similar to that of the Anderson-Newns model [9], but
without spin. The neglect of spin is common in electron-
transfer theory, and is justified by the comparatively weak
electronic interaction.

Both the solvent and the local vibrations are modeled
as harmonic oscillators, which are coupled linearly to the
reactant; the corresponding Hamiltonian is written in the
form

Hosc �
1
2

X
n

h̄vn�p2
n 1 �qn 2 nagn�2� , (2)

where n labels the oscillator modes, which have frequen-
cies vn , momenta pn , and coordinates qn ; gn denotes the
coupling constants. For classical solvent modes other mod-
els such as the dipolar interaction model [10] can also be
used without affecting our results as long as the coupling is
linear. Our model Hamiltonian is the sum of He and Hosc.

We introduce the energy of reorganization of the mode
n through

ln �
1
2

h̄vng2
n , (3)

and the resonance width

D�´� � p
X
k

jVkj
2d�´ 2 ´k� . (4)

We use the so-called wide-band approximation and assume
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that D is independent of the electronic energy ´ over the
range of energies that contribute to the electron-transfer re-
action. In most situations electron transfer is limited to a
region with a width of a few kBT near the Fermi level [11],
so this is not a restrictive condition. The time development
of the system can then be derived by solving the equations
of motion or by calculating the Green’s function directly.
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The mathematical techniques involved in the former ap-
proach are an extension of those used by Brako and Newns
[12] (for the electronic part) and those in Refs. [1,2] (for
the phonon bath). As an example we give the expression
for the annihilation operator ca in the Heisenberg picture.
We consider a system prepared at the time t � 0 and de-
note by �na0� the occupation probability of the redox orbital
at that time; we obtain
ca�t� � exp

Ω
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p̂n�t� is the momentum of the free harmonic oscillator
with frequency vn , and l �

P
n ln is the total energy of

reorganization; initial values are indicated by a subscript 0.
In order to calculate the rate constant we consider a sys-

tem prepared in the oxidized state at t � 0, i.e., �na0� � 0,
and assume that the phonon bath is in thermal equilibrium
with that electronic state at t � 0. We obtain for the ther-
mal expectation value of the number operator na
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where f�´, T � is the Fermi-Dirac distribution, and the ther-
mal correlation function K�t� factorizes into a product of
terms for each mode:
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For classical modes the product can be calculated ex-
plicitly, and the correlation function takes the simple form

Kcl�t� � exp

∑
2

lcl

b

t2

h̄2

∏
, (8)

where lcl is the total reorganization energy of all classi-
cal modes, and b � 1�kBT . Both forms of the correla-
tion function are familiar from the statistical mechanics of
harmonic oscillators [13].

At short times the occupation probability ����na�t����� os-

cillates, but at long times, for t ¿
2 h̄
D or t ¿ h̄

q
b

lcl
, it

decays exponentially and obeys a relaxation equation of
the form

d
dt

����na�t����� � 2
2D

h̄
�����na�t����� 2 ����na�t ! `������ , (9)
with a relaxation time of tr � h̄�2D. This can be verified
by substituting Eqs. (6) and (7) into Eq. (8) and taking the
limit of long times. The reaction rates kred for the reduction
and kox for the oxidation are then obtained from

kred � ����na�`������tr and kox � �1 2 ����na�`�������tr .
(10)

These rate constants can be written in the transparent form

kred �
Z

d´ f�´, T �wred�´� ,
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Z

d´ �1 2 f�´, T ��wox�´� ,

(11)

where wred�´� is the rate of electron transfer from an oc-
cupied level with energy ´ on the metal to the reactant,
and wox is the rate of electron transfer from the reactant
to an empty level on the metal. The former rate is propor-
tional to the so-called density of oxidized states introduced
by Gerischer [14], and the latter to the density of reduced
states. These energy-resolved rates are given by
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They obey the relationsZ `

2`
wred�´� d´ �

D

h̄
, (14)
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with corresponding relations for wox. In addition, detailed
balancing holds.

The combination of Eqs. (11), (12), and (13) is our
general expression for the rate constants. For small values
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of the width D we may replace the term exp�2Djtj�h̄� in
Eqs. (12) and (13) by unity, and we obtain the rate expres-
sions familiar from the Levich-Dogonadze theory [6].

If only classical modes are coupled to the electron trans-
fer, the remaining integral in Eqs. (12) and (13) can be cal-
culated explicitly,

wred�´� �
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h̄
�plkBT �21�2

3 Re
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,

(16)

where w�z� � e2z2
erfc�2iz� is the complex error func-

tion [15]. The rate wox is obtained by changing the sign
of l in the argument of the error function; this is a conse-
quence of the detailed balancing condition. Figure 1 shows
the corresponding reduction rate at equilibrium, when ´a

equals the Fermi level of the metal, as a function of the
energy width D. For small interactions this dependence
is linear; this is the range in which perturbation theory is
valid. If we neglect the width D in the last term Eq. (16)
simplifies to

wred�´� �
D

h̄
�plkBT �21�2 exp 2

�´a 2 ´ 1 l�2

4lkT
.

(17)

The exponential term is familiar from the theories of Hush
[3] and Marcus [4], and determines the classical acti-
FIG. 1. Dependence of the reduction rate kred and the activa-
tion energy at equilibrium on the energy broadening D for a
system that couples to classical modes only; lcl � 0.5 eV.

vation energy. In the adiabatic theory [8] the classical
activation energy decreases with increasing electronic in-
teraction D. A similar effect is observed in our model:
the effective activation energy, defined through Eact �
2d ln�kcl

red��d�1�kT �, where kcl
red is the classical rate con-

stant obtained from Eqs. (11) and (16), also decreases with
increasing D (see Fig. 1).

In many cases the electron transfer is coupled to a clas-
sical solvent bath and a few quantum modes. A compara-
tively simple formula is obtained if one quantum mode
only is reorganized; in this case the energy-resolved rate
can be written in the form
wred�´� �
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where the index 1 labels the quantum mode, and In is a
modified Bessel function of the first kind. Figure 2 shows
a few illustrative cases: If the reactant is fully solvated the
two energies of reorganization lcl and l1 are typically of
the same order of magnitude. In this case wred�´� is broad
and featureless (full line); it resembles the Gaussian form
familiar from Marcus theory, but the decay at high ener-
gies, which corresponds to the Marcus inverted region, is
not so fast. If the reactant is embedded in a film its inter-
action with the solvent is weak, and the energy-resolved
rate may exhibit quantum oscillations (dotted line); these
are smeared out if the energy width is of the same order of
magnitude as the quantum hn (dashed line).

It has recently been demonstrated that a reactant ad-
sorbed on the electrode surface may be observed by a
scanning tunneling microscope [16]. In this case the trans-
ferring electron is scattered by the reactant, and the process
can be described by a scattering matrix T �´, ´0�, where ´

is the energy of the incoming electron, and ´0 that of the
outgoing electron. An explicit formula for the scattering
matrix has been derived in [2] using results obtained for
quantum dots [1]. If the electronic width G caused by
the interaction with the tip is much smaller than the width
D acquired through the interaction with the metal— this
would be the typical case— the energy resolved rates de-
rived here are related to the scattering matrix by

wred�´� � G
Z

T �´, ´0� d´0 . (19)

If only classical modes are coupled to the electronic tran-
sition, the electron is always scattered elastically. In this
case the scattering matrix contains a factor d�´ 2 ´0�, and
is directly proportional to the energy-resolved rate wred�´�.

The rate constants that we have derived in this work are
for an ensemble of identical reactants with a given value
for the energy width D. In an experiment one measures the
average rate of an ensemble of particles distributed in the
vicinity of the electrode, which have different interactions
with the electrode and hence different widths D.
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FIG. 2. Normalized energy-resolved rates h̄wred�D. Full line:
lcl � 0.5 eV, l1 � 0.5 eV, hn1 � 0.2 eV, D � 0.01 eV;
dotted line: lcl � 0.1 eV, l1 � 0.5 eV, hn1 � 0.2 eV,
D � 0.01 eV; dashed line: lcl � 0.1 eV, l1 � 0.5 eV,
hn1 � 0.1 eV, D � 0.1 eV.

The work presented above is the first quantum theory
of electrochemical electron transfer reactions valid for ar-
bitrary strengths of the electronic interaction. It is in-
teresting to compare our results with those obtained for
electron transfer between two solvated reactants [17]. The
wide-band approximation that we have used here can be
applied only if one of the reactants has a continuum of
electronic levels, therefore it is not applicable to the reac-
tion between two molecules. Nevertheless, our equations
for the energy-resolved rates do show a certain similarity
with approximate expressions obtained for the two-level
problem. This is not surprising, since both rates are in-
fluenced by the same effects: a thermal broadening of
the levels caused by the classical bath, discrete vibrational
levels, and an electronic interaction responsible for the
electron transfer.

Since we have represented the solvent as a bath of un-
damped oscillators, our model does not account for solvent
friction. Therefore it will not reduce to the Grothe-Hynes
[18] theory in the classical limit. As has been pointed out
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by Morgan and Wolynes [19], solvent dynamics is likely
to become the rate-determining step for very strong elec-
tronic coupling. Obviously, our model will not apply in
that case.
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