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Femtosecond Optical Responses of Disordered Clusters, Composites, and Rough Surfaces:
“The Ninth Wave” Effect
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We predict that in the course of femtosecond excitation of random clusters, composites, or rough
surfaces in the optically linear regime, ultrafast giant fluctuations of local fields occur. These fluctuations
cause transient (on a femtosecond scale) formation of highly enhanced fields localized in nanometer-size
regions (“the ninth wave effect”). The spatial distribution of those fields is dramatically different from
the case of steady-state excitation. We discuss manifestations of this effect and possible experiments.

PACS numbers: 78.20.Bh, 42.65.Sf, 71.45.Gm, 78.47.+p
In this paper we consider ultrafast optical responses of
strongly disordered systems (fractal clusters, rough sur-
faces, and random composites) whose size is mesoscopic,
i.e., much larger than the atomic size but much smaller
than the light wavelength. We predict from our computa-
tions that femtosecond linear responses of such systems
show what we call “the ninth wave effect” [1]. Namely, in
the course of evolution of the system induced by a femto-
second laser pulse, excitation initially spread over the
whole system concentrates in a narrow (on a nanometer
scale) region, where a local field develops that can exceed
the average and exciting fields by orders of magnitude.
The spatiotemporal behavior of the local fields is deter-
ministically chaotic, i.e., random, but fully reproducible
for the given system and the exciting pulse.

This effect is a dynamic counterpart of the chaoticity
of the eigenmodes, their inhomogeneous localization, and
giant spatial fluctuations of the local fields in random sys-
tems predicted earlier for steady-state excitation [2–4] and
observed experimentally (see, e.g., Refs. [5,6], and cita-
tions therein). The femtosecond dynamics of the local field
at the site of the maximum field (“hot spot”) is very differ-
ent from that of the averaged field. The spatial distribution
of the femtosecond local fields near the maximum-field
time is very singular and localized, and dramatically dif-
ferent from the steady-state distribution.

Recently, great progress has been achieved in physics of
femtosecond pulses [7–10] (see also references therein).
Effects of intense femtosecond radiation include genera-
tion of high harmonics from the visible to x-ray region
[7], strong x-ray emission from hot plasmas produced by
irradiation of colloidal metals [11] and clusters in gases
[12], and multiple ionization of metal clusters enhanced by
plasmons [13]. Existence of radiation sources and the mul-
titude of femtosecond effects shows feasibility and rele-
vance of the phenomena predicted in this paper.

Quantitatively, consider a system consisting of N
particles (monomers) positioned at coordinates ri , i �
1, . . . , N . The electric field of the exciting pulse at an ith
monomer at time t, denoted E

�0�
i �t�, is assumed to be non-

saturating and known. We define a local field at this
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monomer Ei in terms of the corresponding induced
dipole moment di�v� � a0�v�Ei�v�, where a0�v� is
the dipole polarizability of an isolated monomer at a
frequency v. Throughout the paper, we imply the Fourier
(frequency) domain by simply indicating frequency
arguments v, . . . , as opposed to time variables t, t0, . . .
for the real time domain. In specific computations, we
consider the monomers as spheres of radius Rm, for which
a0�v� � R3

m�e�v� 2 1���e�v� 1 2�, where e�v� is the
relative dielectric function of the monomer material.

The local field Ei�t� at a time t at an ith monomer is
given by a retarded Green’s function of the system Gr ,

Eib�t� �
NX

j�1

Z t

2`
Gr

ib,jg�t 2 t0�E�0�
jg �t0� dt0 . (1)

Here and below, Greek subscripts denote Cartesian com-
ponents with summation over recurring indices implied.

To find Gr , we use two well-tested approximations.
First, the quasistatic approximation implies that the size of
the system is much smaller than the light wavelength and
absorption depth. This excludes effects of light propaga-
tion, extinction, and formation of polaritons. However, the
rich femtosecond dynamics is preserved, since it is due to
motion of surface plasmons on subwavelength scale. The
second is the dipole approximation that is applicable be-
cause the effects predicted are collective, formed by inter-
actions of many monomers at distances ¿Rm. We use the
dipolar spectral theory of Ref. [14] that is an approxima-
tion of the exact spectral theory [15].

In the dipole approximation, the local field problem re-
duces to a well-known set of coupled-dipole equations,

Z�v�dib�v� � E
�0�
b �v� 2

NX
b�1

Wbg�ri , rj�djg�v� , (2)

where Z�v� � a
21
0 �v�, and the dipole-interaction ten-

sor is Wbg�r, r0� � 2
≠

≠rb

≠

≠r 0
g

1
jr2r0j . We introduce 3N-

dimensional vectors jd�, jE�0��, . . . with the components
�ibjd� � dib , �ibjE�0�� � E

�0�
ib (and similarly for other

vectors), and obtain a single equation in a 3N-dimensional
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space, �Z�v� 1 W� jd�v���� � jE�0��v����, where
�ibjW jjg� � Wbg�ri , rj� [14].

The solution of Eq. (2) is determined by the eigenvalues
wn and eigenvectors (eigenmodes) jn� of the stationary W
operator, �W 2 wn� jn� � 0, where n � 1, . . . , 3N is the
eigenmode’s number. These eigenmodes are the surface
plasmons of the whole system. The required Green’s func-
tion in the frequency representation is

Gr
ib,jg�v� � Z�v�

X
n

�ibjn� � jgjn� �Z�v� 1 wn�21,

(3)

where �ibjn� is an amplitude of an nth eigenmode at an
ith monomer with polarization b.

We have carried out numerical computations for three
types of random systems generated by the Monte Carlo
method. Two of them are fractal clusters, namely cluster-
cluster aggregates (CCA) [16,17] in two and three dimen-
sions, and the third is random composites of spheres with
fill factor f � 0.12. For definiteness, we assume that the
monomers are silver nanospheres whose dielectric func-
tion is that of bulk silver [18]. For 3D CCA and for com-
posites, we take the ambient medium to have a dielectric
constant of 2.0, while for 2D CCA it is vacuum. The num-
ber of monomers in a cluster or in the composite’s unit
cell is set N � 1500. For composites, we impose periodic
boundary conditions on the unit cell. We use a Gaussian
shape with linear polarization for the exciting pulse with
unit amplitude, carrier frequency v0, and pulse length T ,
E�0��t� � cos�v0t� exp�2t2�T2�. For each system, v0 has
been chosen near the absorption maximum.

We show in Fig. 1 the predicted femtosecond dynam-
ics of induced electric fields for a three-dimensional (3D)
CCA cluster (a fractal with Hausdorff dimension D �
1.75). Importantly, the local field Emz at the site of its
maximum (“hot spot”) is enhanced by more than 2 or-
ders of magnitude with respect to both the exciting field
E�0�

z and the averaged local field �Eiz�. The hot-spot field
Emz�t� reaches its maximum by the end of the exciting
pulse, which implies that the excitation process is coherent,
occurring before relaxation runs its course. The mean-field
dynamics exhibits pronounced coherent beats due to inter-
ference between different eigenmodes.

Since clusters under consideration are complicated
chaotic many-body systems, they possess a hierarchy
of characteristic times. The shortest of these times tv

determines the buildup of spikes of local fields. It is
on the order of a period of contributing eigenmodes
tv 	 2p�v 	 4 fs. The temporal decay of those spikes
is determined by much longer relaxation times td�v�.
These can be found from Eq. (3) as td �

dX�v�
dv �d�v�,

where X�v� 
 2ReZ�v� and d 
 2ImZ�v� are spectral
variables [14]. For v � 0.8 1.2 eV relevant for Fig. 1
and parameters of Ref. [18], td � 55 72 fs in agreement
with the decay times of the hot-spot field Emz in Fig. 1.
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FIG. 1. For a 3d CCA cluster, dependencies on time of the
exciting field E�0�

z �t�, the local field (z polarization) at the site
of the maximum field Emz�t�, and the local field averaged over
all monomers �Eiz�t��. The carrier frequency (in energy units)
is 1.0 eV, and the pulse length is T � 25 fs.

The dynamics of the spatial distribution of local fields
is shown in Fig. 2. At all times, the distributions are very
chaotic and singular. After just a few oscillations of the
driving pulse (t � 6.4 fs), the fields are excited nonselec-
tively at most of the monomers, because such a short ex-
citation acts as an instantaneous perturbation. In contrast,
the development of a self-consistent polarization requires
time t ¿ tv . In other terms, the initially excited surface
plasmons have to move through the system to establish true
eigenmodes, and there has not been enough time for that.
In contrast, at the moment of “the ninth wave” t � 40 fs,
there is a dominating hot spot with the electric field en-
hanced by a factor of *250, while the rest of the sys-
tem is weakly excited. This “ninth wave” persists long
into the free-induction stage (t � 92 fs) where the excit-
ing pulse is long gone, because still t 	 td . At a long
time, t � 196 fs * td , the relaxation takes its course, the
fields decay and yet again change their spatial distribution.

All of these distributions are radically different from
the steady-state distribution obtained by the independent
method of Refs. [2,3] for the same carrier frequency,
shown in Fig. 3 (left panel). This difference is due to
the fact that the pulse duration T is short, T & td . The
driving pulse should be long enough, T ¿ td , to obtain a
dynamic distribution approaching the static one. We have
verified this prediction by calculating the field distribution
for a very long pulse shown in Fig. 3 (right panel). This
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FIG. 2. Local fields Eiz�t� for a 3d CCA cluster as functions of
the spatial coordinates �x, y� for the moments of time indicated.
The fields are summed over z for all monomers with the same
�x, y� but different z to display the required 3d distribution on a
plane figure.

distribution is indeed remarkably similar to the static one
(cf. the two panels). This not only confirms our range of
td , but also independently verifies the validity and stability
of our spatiotemporal solutions.

To interpret these results, we invoke the effect of
giant fluctuations of local fields [4]. Though this effect
has been predicted for steady-state excitation, it should
take place also for the developed stage of femtosecond
excitation (t ¿ tv) where the eigenmodes are already
established. The distribution P�I� of the relative local field
intensity I � E2

i �E�0�2 scales as P�I� � NI2e , where
the critical exponent e is very close to its binary-
approximation value of 3�2. With this distribution,
an estimate for the maximum amplitude Em of the
local field that develops at one of the N monomers is
Em�E�0� & N1��2�e21�� � 103, in agreement with our
calculated values. Hence, it is likely that in the course of
the femtosecond excitation the giant fluctuations cause
concentration of the local optical fields at hot spots and
their colossal enhancement.

FIG. 3. Local fields presented similar to Fig. 2. Left panel:
steady-state excitation with the carrier frequency v0 � 1 eV.
Right panel: Excitation with a pulse of T � 500 fs length.
FIG. 4. Local fields Eiz�t� for a 2D CCA cluster as functions
of the coordinates �x, y� for the moments of time indicated. The
exciting pulse has v0 � 0.75 eV and T � 30 fs.

Regarding spatial correlations of the local field spikes,
using our steady-state results [2] as a guidance, the spa-
tial distribution and correlation functions of the local fields
scale, i.e., depend only on the ratio r�Rc, where r is dis-
tance and Rc is the system’s total size, for Rc ¿ r ¿ l.
The minimum-scale length l is seen as the size of local
field spikes. This size l in turn scales in the spectral
variable as l 	 RmjR3

mXj2l, where l � 0.25 [2]. In the
whole visible spectral region, R3

mX is from 21 to 20.2, so
l 	 Rm. Hence, these spikes are always sharp, localized
on a few monomers. Because of the scaling, larger clusters
are expected to possess a similar behavior as long as their
size is still less than the light wavelength. We will verify
these predictions numerically elsewhere.

Given the universality of the giant fluctuations of local
fields in fractal systems, we expect the ninth wave effect
to exist in a wide class of fractal clusters, composites, and
rough surfaces. Some manifestations of it may exist also in
nonfractal random systems. We have confirmed a behavior
qualitatively identical to the one described above for differ-
ent individual 3D CCA clusters. We have also considered
another fractal system, CCA clusters in 2D (D � 1.4),
which can serve as a model for surface roughness. An
example of results for such a cluster is shown in Fig. 4. At
the initial stage (t � 10 fs), the local fields are excited at
most monomers by a few first oscillations of the excited
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FIG. 5. Similar to Fig. 4, but obtained for a steady-state wave
with the same carrier frequency v0 � 0.75 eV.
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FIG. 6. Similar to Fig. 2 but for a random composite. The
pulse parameters are T � 10 fs and v0 � 2.5 eV.

field. Later (t � 49 fs), the single peak with the field en-
hancement 	102 dominates the distribution. These dis-
tributions are dramatically different from the distribution
at the stationary excitation with the same frequency v0 �
0.75 eV shown in Fig. 5.

A generally distinct behavior with some common
properties is found for a nonfractal random composite
(Fig. 6). Initially (t � 3.1 fs), the excitation of almost all
monomers (inclusions) is pronounced, similar to fractal
systems. However, at the maximum point (t � 12 fs), the
field is not completely localized at just a few monomers in
contrast to fractals. It is explained by much smaller fluc-
tuations in nonfractal systems and much faster relaxation
at v0 � 2.5 eV where the composite absorbs.

The rich femtosecond behavior of local fields predicted
above will manifest itself in a wide class of possible experi-
ments. The hot spots will produce enhanced nonlinear re-
sponses. A contributing factor to it is that the femtosecond
hot spot occurs under nondissipative conditions. This im-
plies that it concentrates energy absorbed initially by many
monomers similar to operation of an antenna (in contrast
to steady-state conditions, where the hot spots are formed
by the competition of the excitation and dissipation). In
particular, the hot spots will dominate an enhanced Raman
scattering and generation of third and higher harmonics
for weakly saturating femtosecond pulses similar to the
steady-state enhancement [19]. It is also feasible that a
low-level femtosecond laser excitation can be combined
with optical probe microscopy to track spatial details of
the ultrafast local fields. With an increase of the pulse am-
plitude, optical saturation may modify the hot spots but is
very unlikely to eliminate them. These hot spots will cause
an enhanced production of femtosecond x-ray pulses and
hot ions. The spatial distribution of local fields at a hot spot
can be determined by means of x-ray or ionic microscopy
using the laser-induced radiation of the system itself. The
nanometer size of a hot spot makes it a prospective source
1014
of x rays and ions for the purposes of microscopy and other
applications.
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