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An astrophysically realistic model of wave dynamics in black-hole spacetimes must involve a non-
spherical background geometry with angular momentum. We consider the evolution of gravitational (and
electromagnetic) perturbations in rotating Kerr spacetimes. We show that a rotating Kerr black hole be-
comes “bald” slower than the corresponding spherically symmetric Schwarzschild black hole. Moreover,
our results turn over the traditional belief (which has been widely accepted during the last three decades)
that the late-time tail of gravitational collapse is universal. Our results are also of importance both to
the study of the no-hair conjecture and the mass-inflation scenario (stability of Cauchy horizons).

PACS numbers: 04.70.Bw, 04.25.Nx, 04.40.Nr
The radiative tail of gravitational collapse decays with
time leaving behind a Kerr-Newman black hole character-
ized solely by the black-hole mass, charge, and angular
momentum. This is the essence of the no-hair conjecture,
introduced by Wheeler in the early 1970s [1].

Price [2] was the first to analyze the mechanism by
which the spacetime outside a (nearly spherical) star di-
vests itself of all radiative multipole moments, and leaves
behind a Schwarzschild black hole; it was demonstrated
that all radiative perturbations decay asymptotically as an
inverse power of time, the power indices equal 2l 1 3
(in absolute value), where l is the multipole order of the
perturbation. This late-time decay of radiative fields is
often referred to as their “power-law tail.” Physically,
these inverse power-law tails are associated with the back-
scattering of waves off the effective curvature potential at
asymptotically far regions [2,3].

The analysis of Price has been extended by many au-
thors. We shall not attempt to review the numerous works
which address the problem of the late-time evolution of
gravitational collapse. For a partial list of references, see,
e.g., [4]. These earlier analyses were restricted, however,
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to spherically symmetric backgrounds. It is well known
that realistic stellar objects generally rotate about their
axis, and are therefore not spherical. Thus, the nature of
the physical process of stellar core collapse to form a black
hole is essentially nonspheric. An astrophysically realistic
model must therefore take into account the angular mo-
mentum of the background geometry.

The corresponding problem of wave dynamics in real-
istic rotating Kerr spacetimes is much more complicated
due to the lack of spherical symmetry. A first progress has
been achieved only recently [5–8]. Detailed analyses for
the simplified toy model of a test scalar field in the Kerr
background have been given recently in [9,10].

Obviously, the most interesting situation from a physi-
cal point of view is the dynamics of gravitational pertur-
bations in rotating Kerr spacetimes. This is the subject of
this Letter, in which we present our main results for this
fascinating problem. Full details of the analysis are given
elsewhere [4].

The dynamics of massless perturbations outside a real-
istic rotating Kerr black hole is governed by Teukolsky’s
master equation [11,12]:
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where M and a are the mass and angular momentum per
unit mass of the black hole, and D � r2 2 2Mr 1 a2.
(We use gravitational units in which G � c � 1.) The
parameter s is called the spin weight of the field. For
gravitational perturbations s � 62 (for electromagnetic
perturbations s � 61). The field quantities c which sat-
isfy Teukolsky’s equation are given in [12].

Resolving the field in the form c � D2s�2�r2 1

a2�21�2
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m�2` Cmeimw (where m is the azimuthal num-
ber), one obtains a wave equation for each value of m
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where the tortoise radial coordinate y is defined by dy �
��r2 1 a2��D�dr. (We suppress the index m.) The coef-
ficients Bi � Bi�r , u� are given by
B1�r , u� � 1 2
Da2 sin2u

�r2 1 a2�2 , (3)
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[The explicit expression of B3�r , u� is not important for the analysis.]
The time evolution of a wave field described by Eq. (2) is given by

C�z, t� � 2p
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(5)

for t . 0, where z stands for � y, u�. The (retarded) Green’s function G�z, z0; t� is defined by DG�z, z0; t� � d�t�d�y 2

y0�d�u 2 u0��2p sinu with G � 0 for t , 0. We express the Green’s function in terms of the Fourier transform
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where c is some positive constant and l0 � max�jmj, jsj�. The functions sS
m
l �u,aw� are the spin-weighted spheroidal

harmonics which are solutions to the angular equation [12]
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The Fourier transform is analytic in the upper half w plane and it satisfies the equation [12]
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where K � �r2 1 a2�w 2 am, l � A 1 a2w2 2

2amw, and H � s�r 2 M���r2 1 a2� 1 rD��r2 1 a2�2.
Define two auxiliary functions C̃1 and C̃2 as solutions

to the homogeneous equation D̃�w�C̃1 � D̃�w�C̃2 � 0,
with the physical boundary conditions of purely in-
going waves crossing the event horizon, and purely
outgoing waves at spatial infinity, respectively. In
terms of C̃1 and C̃2, and henceforth assuming y0 , y,
G̃l� y, y0;w� � 2C̃1� y0,w�C̃2� y,w��W �w�, where we
have used the Wronskian relation W�w� � W�C̃1, C̃2� �
C̃1C̃2,y 2 C̃2C̃1,y .

It is well known that the late-time behavior of massless
perturbation fields is determined by the backscattering
from asymptotically far regions [2,3]. Thus, the late-time
behavior is dominated by the low-frequencies contribution
to the Green’s function, for only low frequencies will be
backscattered by the small effective curvature potential
(at r ¿ M). Therefore, a small-w approximation [or
equivalently, a large-r approximation of Eq. (8)] is suffi-
cient in order to study the asymptotic late-time behavior
of the fields [13]. With this approximation, the two basic
solutions required in order to build the Fourier trans-
form are C̃1 � rl11eiwrM�l 1 s 1 1 2 2iwM, 2l 1

2, 22iwr� and C̃2 � rl11eiwrU�l 1 s 1 1 2 2iwM, 2l 1

2, 22iwr�, where M�a,b, z� and U�a, b, z� are the two
standard solutions to the confluent hypergeometric
equation [14]. Then W�C̃1, C̃2� � i�21�l11�2l 1

1�! �2w�2�2l11���l 1 s�!.
In order to calculate G�z, z0; t� using Eq. (6), one may

close the contour of integration into the lower half of the
complex frequency plane. Then, one identifies three dis-
tinct contributions to G�z, z0; t� [15]: prompt contribution,
quasinormal modes, and tail contribution. The late-time
tail is associated with the existence of a branch cut (in C̃2)
in the complex frequency plane [15] (usually placed along
the negative imaginary w-axis). A little arithmetic leads
to [16]
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Taking cognizance of Eq. (6) we obtain
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The angular equation (7) is amenable to a perturbation
treatment for small aw; we write it in the form �L0 1

L1�sS
m
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m
l sS

m
l , where L1�u, aw� � �aw�2 cos2u 2

2aws cosu [and L0�u� is the w-independent part of
Eq. (7)], and we use the spin-weighted spherical functions
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dard perturbation theory (see, for example, [17]) yields [4]
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where, to leading order in aw, the coefficients Clk�aw�
are w independent [4]. Equation (11) implies that the
black-hole rotation mixes different spin-weighted spheri-
cal harmonics.

The time evolution of the fields is given by Eq. (5).
Therefore, in order to elucidate the coupling between
different modes we should evaluate the integrals
	slm j skm
, 	slmj sin2ujskm
, and 	slmj cosujskm
,
where 	slmjF�u�jskm
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R
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Eqs. (3) and (4) for the definition of the Bi�r , u� co-
efficients]. The spin-weighted spherical harmonics are
related to the rotation matrix elements of quantum me-
chanics [18]. Hence, standard formulas are available for
integrating the product of three such functions (these are
given in terms of the Clebsch-Gordan coefficients [4]).
In particular, the integral 	sl0j sin2ujsk0
 vanishes unless
l � k, k 6 2, while the integral 	sl0j cosujsk0
 vanishes
unless l � k 6 1. For nonaxially symmetric �m fi 0�
modes, 	slmj sin2ujskm
 fi 0 for l � k, k 6 1, k 6 2,
and 	slmj cosujskm
 fi 0 for l � k, k 6 1 (all other
matrix elements vanish).

Asymptotic behavior at timelike infinity.—As already
explained, the late-time behavior of the fields should fol-
low from the low-frequency contribution to the Green’s
function. Actually, it is easy to verify that the effective
contribution to the integral in Eq. (10) should come from
jwj � O�1�t�. Thus, in order to obtain the asymptotic be-
havior of the fields at timelike infinity (where y, y0 ø t)
we may use the jwjr ø 1 asymptotic limit of C̃1�r,w�,
which is given by C̃1�r ,w� � rl11 [14].

Substituting this in Eq. (10), and using the representa-
tion Eq. (11) for the spin-weighted spheroidal wave func-
tions sSl [together with the above cited properties of the
integrals 	slmj sin2ujskm
 and 	slmj cosujskm
], we find
that the asymptotic late-time behavior of the l mode (where
l $ l0) is dominated by the following effective Green’s
function:
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where F1 � F1�l, l0,m, s� � �21��l1l012s12��222l011�l 1

l0 1 2�! �l0 1 s�! �l0 2 s�!Cl0l�p��2l0 1 1�!�2. We em-
phasize that the power indices l 1 l0 1 3 found here for
12
rotating Kerr spacetimes are smaller than the correspond-
ing power indices (the well known 2l 1 3) in spherically
symmetric Schwarzschild spacetimes. (There is an equal-
ity only for the l � l0 mode.) This implies a slower decay
of perturbations in rotating Kerr spacetimes.

Asymptotic behavior at future null infinity.—It is easy
to verify that for this case the effective frequencies con-
tributing to the integral in Eq. (10) are of order O�1�u�.
Thus, for y 2 y0 ø t ø 2y 2 y0 one may use the
jwjy0 ø 1 limit for C̃1� y0,w� and the M ø jwj21 ø y
(Imw , 0) asymptotic limit of C̃1� y,w�, which is
given by C̃1� y,w� � eiwy�2l 1 1�! e2ip�l1s11��2 3

�2w�2�l1s11�y2s��l 2 s�! [14].
Substituting this in Eq. (10), and using the representa-

tion Eq. (11) for the spin-weighted spheroidal wave func-
tions, we find that the behavior of the l mode (where
l $ l0) at the asymptotic region of null infinity scri1 is
dominated by the following effective Green’s function:
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where F2 � F2�l, k,m, s� � �21��l1k12s12��22k�k 1

s�! �l 2 s 1 1�!Ckl�p�2k 1 1�!.
Asymptotic behavior at the black-hole outer horizon.—

The asymptotic solution to the homogeneous equation
D̃�w�C̃1� y,w� � 0 at the black-hole outer horizon H1

� y ! 2`� is C̃1� y,w� � C�w�D2s�2e2i�w2mw1�y [12],
where w1 � a�2Mr1 [r1 � M 1 �M2 2 a2�1�2 is the
location of the black-hole outer horizon]. In addition,
we use C̃1� y0,w� � y0l11. Regularity of the solution re-
quires C to be an analytic function of w. We thus expand
C�w� � C0 1 C1w 1 . . . for small w (as already ex-
plained, the late-time behavior of the field is dominated by
the low-frequency contribution to the Green’s function).
Substituting this in Eq. (10), and using the representation
Eq. (11) for the spin-weighted spheroidal wave functions,
we find that the asymptotic behavior of the l mode (where
l $ l0) at the black-hole outer horizon H1 is dominated
by the following effective Green’s function:

GC
l �z, z0; t� � sGlMF1D2s�2y0l011

sYl�u�sY
�
l0�u

0�
3 al2l0eimw1yy2�l1l0131b�, (14)

where sGl are constants, and b � 0 generically, except for
the unique case m � 0 with s . 0, in which b � 1 [19].

Pure initial pulse.—So far we have assumed that the
initial pulse consists of all the allowed (l $ l0) modes.
If, on the other hand, the initial angular distribution is
characterized by a pure spin-weighted spherical harmonic
function sY

m
l� , then the asymptotic late-time tails are

dominated by modes which, in general, have an angular
distribution different from the original one (a full analy-
sis of this case is given in [4]). We find that the field’s
behavior at the asymptotic regions of timelike infinity
i1 and at the black-hole outer horizon H1 is dominated
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again by the lowest allowed mode (i.e., l � l0). The
damping exponents are (in absolute value) l� 1 l0 1

3 2 q and l� 1 l0 1 3 2 q 1 b, respectively, where
q � min�l� 2 l0, 2�.

On the other hand, the behavior of gravitational (and
electromagnetic) perturbations at the asymptotic region
of null infinity scri1 is dominated by the l � l0 mode
if l0 # l� # l0 1 2 and by the l0 # l # l� 2 2 modes
otherwise [4]. The corresponding damping exponents are
l0 2 s 1 2 and l� 2 s, respectively.

Summary and physical implications.—We have ana-
lyzed the dynamics of gravitational (physically, the most
interesting case) and electromagnetic fields in realistic ro-
tating black-hole spacetimes. The main results and their
physical implications are as follows:

(1) We have shown that the late-time evolution of re-
alistic rotating gravitational collapse is characterized by
inverse power-law decaying tails at the three asymptotic
regions: timelike infinity i1, future null infinity scri1, and
the black-hole outer horizon H1 (where the power-law be-
havior is multiplied by an oscillatory term, caused by the
dragging of reference frames at the event horizon). The
relaxation of the fields is in accordance with the no-hair
conjecture [1]. This Letter reveals the dynamical physical
mechanism behind this conjecture in the context of rotat-
ing gravitational collapse.

(2) The unique and important feature of rotating gravi-
tational collapse is the active coupling between modes of
different l (but the same m). Physically, this phenomena
is caused by the dragging of reference frames, due to the
black-hole (or star’s) rotation (this phenomena is absent in
the nonrotating a � 0 case). As a consequence, the late-
time evolution of realistic rotating gravitational collapse
has an angular distribution which is generically different
from the original angular distribution (in the initial pulse).

(3) The power indices at a fixed radius are found to
be l 1 l0 1 3. These damping exponents are generically
smaller than the corresponding power indices in spheri-
cally symmetric spacetimes. This implies a slower decay
of perturbations in rotating Kerr spacetimes. Stated in
a more pictorial way, a rotating Kerr black hole generi-
cally becomes “bald” slower than a spherically symmetric
Schwarzschild black hole.

(4) It has been widely accepted that the late-time tail
of gravitational collapse is universal in the sense that it is
independent of the type of the massless field considered
(e.g., scalar, neutrino, electromagnetic, and gravitational).
This belief was based on spherically symmetric analyses.
Our analysis, however, turns over this point of view. In
particular, the power indices l 1 l0 1 3 at a fixed radius
which are found in this Letter are generically different
from those obtained in the scalar field toy model [9,10]
l 1 jmj 1 p 1 3 (where p � 0 if l 2 jmj is even, and
p � 1 otherwise).
We have shown that different types of fields have differ-
ent decaying rates. This is a rather surprising conclusion,
which has been overlooked in the last three decades. It
should be stressed, therefore, that the results obtained from
the scalar field toy model [9,10] are actually not applicable
for the physically interesting case of higher-spin perturba-
tions (i.e., gravitational and electromagnetic fields).

(5) Our results should have important implications for
the mass-inflation scenario and the stability of Cauchy
horizons (see, e.g., [20,21] and references therein). In par-
ticular, the late-time tails found in this Letter should be
used as initial data for perturbations propagating inside the
(rotating) black hole.
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