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An Atom in the Bloch State
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A resonant enhancement of muon spin relaxation has been observed at a field where the muonium
Zeeman splitting crosses a Van Hove singularity in the small polaron band for interstitial muonium in
potassium chloride. This feature is predicted only for muonium in a coherent state near the bottom of
the band and thus clearly establishes that a light interstitial atom such as muonium can exist in a Bloch
state in an ordered crystalline host at low temperature.

PACS numbers: 66.35.+a, 61.72.–y, 76.75.+ i
It is well established that electrons in crystalline solids
behave not as particles colliding repeatedly with the host
atoms, but as quantum mechanical waves extended over
the entire crystal. This picture of electron waves, first
pointed out by Bloch in 1928 and called the “Bloch
state” since then, provides the fundamental basis for
modern solid state physics. In view of this, how should
one consider a light interstitial atom placed in similar
conditions in a lattice? While it is possible in principle
for an atom to be in a Bloch state, there are a number
of factors which prevent such a coherent state from being
realized in practice. However, we have now found that
a muonium atom (effectively a light isotope of atomic
hydrogen whose proton is substituted by a positive muon
having 1�9 of the proton mass) is indeed in such a
Bloch state in an ordinary crystalline host of potassium
chloride (KCl) at very low temperatures (,10 mK). This
new result opens up a path to the experimental study
of a completely novel type of atomic state in crystalline
solids.

Quantum diffusion is an interesting kinetic process in
which an interstitial atomic particle migrates from site
to site in a crystalline lattice by quantum mechanical
tunneling. One of the most dramatic manifestations of
quantum diffusion is that the diffusion rate increases with
decreasing temperature, in contrast to the usual thermal
diffusion. Quantum diffusion was first observed for the
positive muon (m1) in metals and more recently for
muonium (Mu) in ionic crystals [1]. In general, an atom
placed in a crystalline solid strongly interacts with its
host atoms to form the so-called “polaron state,” i.e.,
a complex state associated with the deformation of the
lattice (and also with perturbation of the conduction
electrons in metals), thus making the interstitial atom less
mobile than it would be in the absence of interaction.
However, such a polaron state can have a finite tunneling
matrix element, D, to the nearest neighbor sites, and the
jump frequency (which is proportional to the diffusion
0031-9007�99�83(5)�987(4)$15.00
rate) at a temperature T is

n�T � �
D2

V�T �
, (1)

where V�T � is the damping factor (i.e., the width of
the final state energy level) due to interaction with the
phonon/electron bath and is proportional to a power of
T [i.e., V�T � ~ Ta]. Since D does not depend on T
in nonmetallic hosts, we may expect an inverse power
law T dependence, n�T � ~ T2a , which is in excellent
agreement with many experimental observations [1]. An
example of diffusion of Mu in KCl is shown in Fig. 1
where the predominant phonon damping leads to a steep
increase of jump frequency with decreasing T for T ,

80 K [2,3]. A further reduction of n�T � due to the
additional electron-muon polaron effect was also proved
to be effective for m1 diffusion in metals [1,4].

This diffusion model, based on the situation where an
atom is localized due to strong damping, is valid only
when V�T � ¿ D: The jump frequency cannot exceed
the rate determined by D and thus the rate n is predicted

FIG. 1. Jump frequency, n, of muonium atoms in KCl (circles
from Ref. [3]; diamonds from Ref. [5]).
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to level off for V�T � ø D, i.e.,

n�T � � D . (2)

As shown in Fig. 1 [5], this feature has also been
confirmed in various nonmetallic systems and has been
used to evaluate D in each case. However, it should be
noted that a term such as “jump frequency” may lose its
physical meaning in this situation. The issue becomes
more critical when one considers how the jump frequency
is determined experimentally.

In the case of Mu, one measures the longitudinal muon
spin relaxation rate (1�T1) induced by fluctuation of local
magnetic fields H�t� acting on the Mu orbital electron;
i.e.,

T21
1 � d2

ex

X
i,j

aij

Z
G�t�eivij t dt � d2

ex

X
i,j

aijC�vij� ,

(3)

where dex is the rms value of the random local field [i.e.,
d2

ex � �H�0�2�], G�t� is the time correlation, C�v� is the
corresponding spectral density, and vij is the relevant
Mu Zeeman frequency with the respective amplitude aij

under an applied magnetic field. The random magnetic
field produced by the nuclear moments, which are the
main source of the local field, is short-ranged so that
the fields experienced by the Mu after each jump (with
a mean resident time tc � n21) should be uncorrelated.
This leads to an exponential time correlation function for
the local field,

G�t� �
�H�t�H�0��

�H�0�2�
� exp�2t�tc� , (4)

and subsequently to a Lorentzian spectral density for the
relaxation [6],

C�v� �
tc

1 1 v2t2
c

� CL�v� . (5)

The jump frequencies for the data in Fig. 1 have been
deduced by assuming this spectral density.

On the other hand, when T ø D, the only limiting
factor is the mean free path of Mu l, and one should start
from a delocalized (Bloch) state for l ¿ a (where a is
the lattice constant), which is the eigenstate of energy and
momentum ´k. In this case G�t� is directly given by the
time evolution of the Mu density matrix itself, and the
corresponding spectral density should be expressed as

C�v� � pr�h̄v 1 ´k� � CB�v� , (6)

where r�´k� is the density of states for Mu [7]. One of
the most interesting features of the above prediction is
that the spin relaxation occurs as a result of exchanging
Zeeman energy h̄v with the Mu band energy, so that the
rate may strongly reflect the shape of the Mu density of
states r�´k�. In particular, one would expect a strong
988
modulation of relaxation rate (1�T1) when the Zeeman
frequency coincides with van Hove singularities; i.e.,

v � 0,
4
3

D0,
8
3

D0, or 4D0 , (7)

for a band corresponding to a simple cubic lattice
(where D0 � D�12 for the simple cubic lattice). More
specifically, the lowest Zeeman frequency v12 has the
predominant contribution to Eq. (3) and the most signifi-
cant effect is observed as a peak of relaxation rate when

v12 �
4
3

D0 , (8)

which is illustrated in Fig. 2. (Other singularities are more
difficult to observe in the current conditions and therefore
disregarded in the following discussion.) This is more or
less similar to the situation for the de Haas-van Alphen
effect, with the Landau level replaced by the Zeeman level.
Thus we have the possibility to study the band structure of
a muonium atom in a crystalline lattice by mapping out the
field dependence of the muon spin relaxation. It is also
important to note that the above prediction is valid only
when the initial and final states of the relaxation process are
both Bloch states (i.e., T ø D). In the case of a localized
state, one must average the spectral density over ´k to give
C�v� ~ �r�v�	2 [1,5]. This smears out the structure in the
relaxation rate so that the difference between CL�v� and
CB�v� becomes very subtle.

In order to examine the above prediction, we have
measured the muon spin relaxation rate of the muonium
atom in KCl at the RIKEN-RAL Muon Facility in the
Rutherford Appleton Laboratory. While the details of

FIG. 2. Calculated spin relaxation rate (1�T1 ~P
i,j aijC�vij�, where vij is the transition frequency be-

tween relevant hyperfine levels) for the muonium atom in the
Bloch state, assuming a simple cubic band with D0 � 0.09 K
(solid curve). Compared with the case for localized muonium
(dashed curve), one can see a strong modulation reflecting
the energy dependence of the Mu density of states. (dex was
adjusted to simulate the result in Fig. 3 qualitatively.)
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the experiment will be published elsewhere, we briefly
point out the main distinction of the present experiment
from those in the past. Namely, instead of using a bulk
crystal, a mixture of freshly ground single crystal KCl
and silver powder was molded into a sample holder with
a small amount of grease to secure good thermal contact
with the coldest part of the 3He-4He dilution refrigerator.
Compared with using the bulk crystal, a crude estimation
suggests that about 102 times improved efficiency was
expected for cooling those ground crystals due to wider
surface area. Except for this, conventional muon spin
relaxation (mSR) measurements were performed under
a longitudinal magnetic field (for KCl crystals in this
condition the only muon spin relaxation comes from
Mu). The mSR time spectra were analyzed by a single
exponential decay A�t� � A�0� exp�2t�T1�.

The results are shown in Fig. 3, where one can notice a
clear difference between the data at 3.9 K (Fig. 3a) and
below 10 mK (Fig. 3b). In particular, there is a broad
peak in the relaxation rate in Fig. 3b, which is absent in
Fig. 3a. The spectral density in Fig. 3a is reproduced by
assuming CL�v� plus a constant background relaxation
(�2.5 3 1025 s21), as shown by the solid curve. The

FIG. 3. Muon spin relaxation rate for muonium in KCl (a)
at 3.9 K and (b) below 10 mK. For the solid curves, see the
text. The dot-dashed curve in (b) is the best fit to a Lorentzian
spectrum, whereas the dashed curve is the Lorentzian spectral
component fitted in conjunction with a Gaussian peak around
0.15 T to give the solid curve.
magnitude of local field dex (
1 mT) is about one-half
of the value at higher temperature, which is similar to
the situation in NaCl [3]. The same model, however,
completely fails to fit the data in Fig. 3b because of the
peak around 0.15 T. Since the peak structure seems to be
more pronounced than that in Fig. 2, which was predicted
for a specific case, we adopt a phenomenological model in
which CB�v� is represented by the sum of a Lorentzian
spectrum and a Gaussian peak. A fitting analysis with
this model yields a fitted peak position at 0.16(1) T,
corresponding to an energy of 0.11(1) K. This is close to
the value of D0 � 0.15 K estimated from the leveling off
of the jump frequency and thus provides strong evidence
that the peak originates from the energy band structure
of the muonium atom in KCl. In other words, this peak
structure in the spectral density below 10 mK is a clear
signature that the muonium is in the Bloch state. The
Lorentzian part is well reproduced by assuming the Bloch
state with dex 
 1.2 mT.

The possibility of attributing the observed peak to
anisotropic hyperfine structure is ruled out by the field
dependence of the initial muon polarization Pz�t�. As
shown in Fig. 4, the quenching pattern of the initial
decay positron asymmetry A�0� is in good agreement
with the case of isotropic hyperfine structure with the
known value of the muonium hyperfine parameter
(v0 � 2p 3 4.28 3 109 s21); i.e.,

A�t � 0� � A0

1
2 1 x2

1 1
l

k 1 x2
, (9)

where A0 is the total asymmetry, l is the spin relaxation
rate for the precursor state, k is the transition rate to
the final Mu state, and x � geB�v0 with B being the
applied magnetic field and ge the electron gyromagnetic
ratio. The small A0 (�0.045) is due to the small fractional
yield for muon stopping in the mixture of KCl and Ag

FIG. 4. Initial positron decay asymmetry A�0� versus longitu-
dinal field for muonium in KCl at 3.9 K (circles) and below
10 mK (triangles). Solid curves are results of fitting to Eq. (9)
in the text.
989
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powders. A slight complication arises in Eq. (9) due to
the presence of an unknown precursor state undergoing fast
spin relaxation, leading to loss of initial muon polarization
in a time faster than the current minimum time resolution
(dt $ 1028 s). This is a feature commonly observed in
alkali halides at low temperatures and is presumably due
to fast spin exchange interaction with muon radiolysis
products [8]. Equation (9) is valid in such a case, with
the subsequent relaxation rate being close to the hyperfine
parameter (i.e., l 
 v0). However, it seems that this
process is terminated within time dt, leaving a virtually
unaffected final Mu state for the current time scale of
observation: The obtained ratio l�k � 
0.5 0.8 means
that the transition rate to the final state is of the same
order of magnitude as v0. In any case, it must be stressed
that the field dependence of the asymmetry in Eq. (9) is
predominantly determined by the hyperfine parameter v0
and thereby provides a good measure for v0. Since the
above model with identical v0 for both precursor and final
Mu states is in excellent agreement with the data, we can
conclude that the Mu hyperfine structure is unchanged and
isotropic.

Finally, we discuss the reduction of dex from the value
seen at higher temperatures (�2 mT). As mentioned
earlier, this also occurs in the case of Mu in NaCl and may
be interpreted by a similar scenario [3]. The important
point here is that dex reflects not simply the magnitude
of the local fields themselves but is rather the parameter
used to describe their dispersion {i.e., � ��H�0�2��1�2}.
While this value remains unchanged for localized Mu, it
must be reduced by N1�2 for a muonium simultaneously
probing the local fields at N sites due to the effect of
statistical averaging [9,10]. It is reasonable to make the
interpretation that the effective value of dex is reduced
due to the coherence of the Mu wave function developing
over multiple sites with decreasing temperature. It should
be noted, however, that the position of the peak in the
spectral density does not depend on the magnitude of dex
and thereby the interpretation of current data is hardly
affected by the change of this parameter.
990
The present result demonstrates that one can potentially
study the energy band structure of the “polaron band” for
a hydrogen isotope in any crystalline solid where one finds
stable muonium upon muon implantation. We believe
that this will add an important new dimension to the study
of atomic centers and point defects in solids.
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