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Dimensionality Dependence of the Conductivity Dispersion in Ionic Materials
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The dielectric response of many materials exhibits universal behavior in the form of a power law
frequency dependence of the ac conductivity. This response is seen in all types of structures both
crystalline and amorphous and for all types of polarizing species including dipoles and ions. Here I
demonstrate that for ionic materials the power law exponent decreases with decreasing dimensionality
of the ion conduction pathways. Although percolation concepts such as random walks on a self-similar
fractal lattice provide a qualitative explanation, experimental findings instead indicate that the dispersion
is the result of localized ion motion occurring on an atomic length scale.

PACS numbers: 66.30.Hs
In 1977, Jonscher [1] published a compilation of di-
electric studies to demonstrate how a wide variety of
materials (single crystal, polycrystalline, glassy) involv-
ing all types of polarizing entities (dipoles, hopping
electrons, ions) quite commonly exhibit a power law dis-
persion of the ac conductivity of the form s� f� � fn,
or equivalently of the susceptibility x� f� � fn21, at fre-
quencies above the characteristic relaxation rate. In ad-
dition to the rather narrow range �0.5 , n , 1� reported
by Jonscher for the exponent, it is also remarkable that,
when plotted together, most of the s� f� data, encom-
passing some ten decades in frequency, generally fell
within a range bounded below by s� f� � 10212f and
above by s� f� � 10210f (in V21�m). The source of
this “universal dynamic response” remains something of
a mystery, although many conceptual pictures [2–7] have
developed.

In the case of ionic materials, long range diffusion of
ions results in a frequency independent (d.c.) contribution
to the conductivity in addition to the power law re-
sponse, and the overall frequency dependence is well
approximated by sI� f� � s0�1 1 � f�f0�n�. With de-
creasing temperature, both the dc conduction �s0� as well
as the power law contribution decrease with the result
that s� f� at different temperatures can be scaled so as
to collapse to a single curve [8]. While the exponent
n remains temperature independent over a range of high
temperatures, it appears to increase at lower temperatures
to a value of approximately unity well before zero de-
grees kelvin is reached [9,10]. Since Jonscher’s study,
many have recognized that this temperature dependence
is in reality the result of a superposition of two polarizing
processes [10,11]: the first due to ionic motion �sI� f��
which is sensitive to temperature changes, and the second
�sP� f� � Af� that exhibits a nearly linear frequency de-
pendence and only a weak temperature dependence. Evi-
dence [10] suggests that this latter process is distinct
from the motion of ions giving rise to sI� f�, and while
its origins are yet unclear, some believe that it may be
the result of low energy distortions occurring in the lat-
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tice [3,10]. In addition to its weak temperature depen-
dence, sP� f� displays its own “universal” behavior [9]
in that values of A are often about 10212 sec�V m (to
within a decade) [12]. Thus, as Jonscher observed, s� f�
data are typically bounded below by s� f� � 10212 f.

In Jonscher’s original study, the distinction was not
made between these two separate polarizing processes,
leading to the conclusion that n varies between 0.5
and unity. However, when s� f� is treated as two
separate processes [sI� f� and sP� f�] one finds that the
universality is enhanced. This can be seen in Table I,
where values are compiled of the power law exponent of
several ion conducting materials obtained from analysis
of data available in the literature [13]. In these instances
care has been exercised to insure that the data being
analyzed were at least a decade above 10212f so that the
influence of sP� f� could be neglected. What is clear
from the Table is a pronounced tendency for many of
these materials to exhibit n � 2�3 to within about 0.1, a
range that is considerably narrower than that quoted by
Jonscher.

On closer examination of Table I though, a variation
of the exponent with differing classes of materials is
discernible. For example, the oxide glasses at the top of
the table show n � 0.67 6 0.05, while halide-containing
(Cl, Br) glasses and mixed ion glasses (those which
contain equal amounts of two cation species) exhibit a
lower exponent �0.58 6 0.05�. Further down the Table
are crystalline materials in which conduction occurs
chiefly along two-dimensional planes (alkali b-alumina)
and along one-dimensional channels (hollandite). These,
too, have exponents substantially lower than 0.67.

The exponents reported in Table I are plotted in Fig. 1
as a function of the dimensionality of the conduction
pathways. Oxide, thiosilicate, and thioborate glasses
form homogeneous, disordered networks, and in the ab-
sence of evidence to the contrary are regarded as possess-
ing three-dimensional pathways. The halides and mixed
ion glasses are distinguished from the oxide glasses as
there is evidence from neutron scattering [14,15] that
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TABLE I. Results of a literature survey of various ionic materials listing the power law exponent �n�, mass density �r�, and
correlation length �j�. Densities shown in parentheses are approximated. The last column indicates the temperature range examined
and frequency ranges that differ appreciably from 10 Hz–1 MHz.

Ref. System n r �g�cm3� j�Å� Comment

Glass

[13a] Na2O-3SiO2 0.67 6 0.05 2.49 1.2 6 ? 294 K
[13b] K2O-3SiO2 0.65 6 0.05 2.49 1.4 6 ? 323 K
[13c] Li2O-Al2O3-2SiO2 0.68 6 0.05 2.44 1.6 6 ? 297 K
[13d] Na2O-B2O3-SiO2 0.65 6 0.05 2.50 0.95 6 0.1 300–340 K
[13e] Li2O-3B2O3 0.65 6 0.05 370–430 K
[13f,26] 0.03Li2O-0.97GeO2 0.64 6 0.05 3.8 2.7 6 0.1 400–460 K, low conc.
[13g,26] 0.1Na2O-0.9GeO2 0.69 6 0.05 4.0 3.0 6 0.1 500–560 K, low conc.
[13h] 0.41Li2O-0.59P2O3 0.66 6 0.05 2.35 0.86 6 0.1 320–370 K
[10] NaPO3 0.67 6 0.03 2.53 0.93 6 0.1 310–430 K
[13i] 0.5FeO-0.5P2O5 0.68 6 0.05 2.92 5.5 6 0.5 300–450 K, e2 hopping
[13j] 0.56Li2S-0.44SiS2 0.70 6 0.1 (2.5) 0.95 6 0.1 140–180 K
[13k] 0.005Na2S-0.995B2S3 0.68 6 0.05 400–450 K, low conc.
[13l] 0.008K2S-0.992B2S3 0.69 6 0.05 1.8 5.9 6 0.2 300–450 K, low conc.

Mixed ion

[13m] 0.5Na2O-0.5K2O-3SiO2 0.54 6 0.05 2.49 1.6 6 ? 406 K
[26] 0.05Li2O-0.05Na2O-0.9GeO2 0.58 6 0.03 4.0 2.9 6 0.1 580–680 K
[10] 0.25Li2O-0.25Na2O-0.5P2O5 0.61 6 0.05 2.46 0.95 6 0.1 430–500 K
[13n,25] 0.4Ca�NO3�2-KNO3 0.61 6 0.05 2.23 1.1 6 0.5 300–350 K, melt

Halide

[13o] 10CdF2-11CdO-3CdCl2-6LiF- 0.56 6 0.05 (2.5) 3.0 6 0.5 430–500 K, melt
4KF-30AIF3-30PbF2-4YF3-2LaF

[13p] 0.3Na2F-0.7Na2O-3B2O3 0.63 6 0.05 (2.5) 0.38 6 0.1 380–430 K
[13q] 0.7Li2O-0.6LiCl-B2O3 0.63 6 ? (2.5) 0.90 6 0.1 250–280 K
[17] xLi2O-yLi2Cl2-�1-x-y�B2O3 0.57 6 0.05 550 K, 5 MHz–10 GHz
[13r] 0.56Li2O-0.45LiBr-B2O3 0.60 6 ? (2.5) 1.1 6 0.2 323 K, 0.1 kHz–0.1 GHz
[13s] xAgI-�1-x�AgPO3 0.58 6 0.05 (2.5) 1.6 6 ? 200–300 K

Crystal

Two dimensional

[13t] Na-b Alumina 0.60 6 0.05 3.9 5 6 2 120–300 K
[13u] Ag-b Alumina 0.61 6 0.05 3.9 7 6 2 121 K
[13v] b-AgI 0.51 6 0.05 6.0 0.4 6 ? 292 K

Mixed ion

[13u] �Na�Ag�-b Alumina 0.46 6 0.05 3.9 2 6 1 210–240 K

One dimensional

[13w] Kx�Mg, Ti�8O16 (Priderite) 0.33 6 0.1 300 K, 0.1 kHz–1 GHz
[13x] K1.54Mg0.77Ti7.23O16 (Hollandite) 0.40 6 0.1 200 K, 10 kHz–1 MHz
[13y] Ba1.33Fe1.33Ti7.34O16 (Hollandite) 0.22 6 0.1 270 K, 0.1 kHz–0.1 MHz
these materials possess enhanced intermediate range or-
der. In the halides, it is believed that introduction of
the halide anion results in dendritic pathways of higher
free volume [14] that are responsible for the “fast ion
conduction” properties often reported for these materials.
A similar dendritic feature emerges in the mixed ion situa-
tion. Current models for mixed ion dynamics [16] em-
phasize that the two dissimilar ions �A, B� reside in
dissimilar sites �a, b� and that motion of an ion (e.g, A)
into an ill-configured site �b� is energetically unfavored
relative to motion into an appropriately configured site
�a�. Thus, a dominant contribution to the conduction in
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mixed ion systems occurs along clusters (dendritic) of fa-
vorably configured sites. In both instances (addition of
halide to an oxide glass [17] and mixing of cations [10]),
studies have demonstrated a systematic decrease in the
power law exponent.

Since cluster formation in an otherwise three-
dimensional (3D) network would likely result in a
morphology that is intermediate between 3D and 2D (i.e.,
fractal), I have chosen to position the exponents for the
halides and the mixed ion glasses at a dimension of 2.5 in
Fig. 1. For similar reasons, the exponent for the mixed
ion b-alumina is placed at a dimension of 1.5. These
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FIG. 1. The power-law exponents reported in Table I plotted
against the effective dimension of ion conduction pathways.
Some data have been shifted slightly along the abscissa for
clarity. The inset shows how features of s� f� are related to
the two diffusion regimes discussed in the text.

positions are consistent with the fractal dimension of some
model fractals [18] (e.g., the Sierpinski sponge and gas-
ket), but, are intended only to approximate the distinctions
for the halide and mixed ion systems discussed above.

The dimension dependence of n shown in Fig. 1 has not
been previously reported, and provides new insight into
ion dynamics as well as an important test for proposed
models of the power law dispersion. Several models are
currently touted including those based upon distributions
of energy barriers [19], those which attribute the dispersion
to an inter-ionic interaction [4] or correlated motion [5],
and those which achieve power law dispersion through the
introduction of percolated pathways and random walks on
a fractal lattice [7]. Of these, only the latter percolation
models provide an explicit dimension dependence of the
exponent.

It is well established that particles performing random
walks on a regular lattice exhibit Fickian diffusion, such
that the mean squared displacement �r2� varies as 6Dt,
where D is the diffusivity. However, computer simula-
tions of random walks on a self-similar fractal exhibit non-
Fickian diffusion [18,20]. The fractal lattice limits the
possible moves the particle can make in a given step,
reducing the overall displacement in comparison with
Fickian diffusion. For excursions shorter than the cor-
relation length j (over which the self-similarity persists),
the mean squared displacement, �r2�, varies as a power
law �r2� � t12n. At length scales in excess of j, self-
similarity is absent and the diffusion returns to Fickian
with �r2� � t. If the particles possess a charge, q, then
the conductivity can be related to the evolution of �r2� by
[19,21]

s� f� � 2
Nq24p2f2

6kT

Z `

0
�r2�e2i2pft dt , (1)
for which one finds two regimes of ac conductivity: a
power law regime where s� f� � fn accompanied at
lower frequency by a frequency-independent regime where
s� f� � s0. This relationship between �r2� and the ac
conductivity is shown schematically in the inset to Fig. 1.

The exponent n can be obtained by numerical simu-
lations of such walks occurring in different dimensions,
and results for both 2D and 3D computer simulations
[18,22] are included in Fig. 1. While the percolation
exponents fall below that of the experimental data in
Fig. 1, more recent simulations [23] that incorporate
Coulomb interactions between the charges find increased
exponents with increasing interaction strength. Ex-
perimental investigations of the power law dispersion
with decreasing cation concentration, however, indicate
that the exponent remains unchanged, despite an order-
of-magnitude increase in the average cation separation
distance [24–26], and hence contradict the notion that
inter-cation interactions play any significant role in the
power law dispersion.

Furthermore, estimates of the correlation length hint that
the above percolation picture may be inaccurate. From
the inset to Fig. 1, the transition of �r2� from non-Fickian
to Fickian (occurring when �r2� � j2) corresponds to the
frequency � f0� where s� f� crosses over from power law
to dc. In the percolation picture, the Fickian diffusion at
f , f0 can be thought of as an unrestricted random walk
with “steps” of size j occurring at a rate f0. In this regime,
Eq. (1) reduces to the familiar Nernst-Einstein relation,

s0 �
gNq2j2

6kT
HRf0 , (2)

where g is the fraction of charge carriers that are mobile
and the Haven ratio HR expresses the presence of pos-
sible cross correlation in the diffusion �HR , 1� [27]. In
Eq. (2), N is the total density of charge carriers.

From literature data the correlation length is computed
using Eq. (2) under the strong electrolyte �g � 1� assump-
tion and neglecting cross correlations �HR � 1�. Results
are included in Table I. For glasses containing moderately
high densities of charge carriers �N � 2 3 1022 cm23�
one finds j � 1.5 6 0.5 Å. Glasses containing consid-
erably lower alkali concentrations exhibit somewhat larger
j, often increasing [25] as N21�3. While the value j �
1.5 Å may be increased by letting both g and HR differ
from unity, even in an extreme case where HR � 0.3 and
g � 0.3 the correlation length remains less than 5 Å. This
length is clearly at odds with the conceptual picture of ex-
tensive regions of self-similar structure. Instead it suggests
that the power law dispersion is the result of a highly local-
ized motion that evolves over �r2� comparable to atomic
scales.

This type of localized motion is exemplified in the
“jump relaxation model” proposed by Funke [5]. In this
model, a given “central” cation (prior to hopping) resides in
a potential energy minimum formed by the equilibrated
distribution of neighboring cations. Upon hopping to an
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adjacent site, the cation finds itself temporarily out of
equilibrium with respect to the distribution of neighboring
cations. Two things can happen. Either the neighboring
charges redistribute so as to establish a new equilibrium
condition about the new site, or the cation returns to its
original site. At short times the latter process is favored
and the cation performs a sequence of forward-backward
hops which are unsuccessful at producing any net charge
displacement. At longer times, redistribution of the neigh-
boring charges allows the cation to complete a hop to the
adjacent site that is successful in contributing to net con-
duction. Funke [5] reports that an analytic solution for
the one-dimensional case indicates the correlated, forward-
backward motion gives rise to power law dispersion in the
a.c. conductivity with an exponent n � 1 2 a. The “mis-
match parameter,” a, expresses the shift �Dx � ax0� in
the position of the potential minimum near the neighbor-
ing ions when the central ion hops �Dx � x0� by one lattice
spacing. Extensions of the model to higher dimensions are
unavailable, but could lead to variation of n due to the in-
creased number of neighboring ions which contribute to
the mismatch parameter.

In conclusion, the ac conductivity of ionic materials
exhibits a power law dispersion in frequency in which the
exponent appears to depend only upon the dimension of
the conduction space. Indications are that this dispersion
is the result of localized �j � 1.5 Å� ion displacements,
consistent with correlated motions of the cation in the
vicinity of an anion site.
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