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Charge Fluctuation Instability of the Dust Lattice Wave
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Taking into account the statistical charge fluctuations on microspheres embedded in a low-pressure
gas discharge, a stochastic differential equation for the one-dimensional dust lattice wave is derived.
Using this equation, the nonstochastic differential equations for the mean particle displacement and for
the second moments of the displacement and velocity are obtained. The analysis of the equation for
the second moments shows that for sufficiently small gas pressure the charge fluctuations can result in
exponential growth of the average energy of lattice oscillations.

PACS numbers: 52.25.Zb, 52.25.Gj, 52.35.–g
In a dusty plasma there are two types of low-frequency
oscillations—dust acoustic (DA) and dust lattice (DL)
waves. The DA waves can be excited in a plasma with
weak electrostatic coupling between the charged dust par-
ticles. This mode was theoretically predicted by Rao et al.
[1]. DL waves are a result of oscillations of dust par-
ticles with strong electrostatic coupling, when particles
form crystal-like structures. The DL waves were investi-
gated in many experiments in a radio-frequency discharge
plasma [2–7]. In these experiments, particles were sus-
pended in the sheath at the lower electrode, where the
electrostatic force on the particle balances the force of
gravity. The first theoretical considerations of the DL
mode were based on the usual approximation of the one-
dimensional (1D) particle string [2,8] that have been em-
ployed in solid state theory for the description of the
elastic vibrations. In later publications the same approach
was extended to the 2D plasma crystal [7].

Usually, the theoretical investigations of oscillations in a
dusty plasma are based on the assumption that all the dust
particles carry an equal constant charge. However, the real
distribution function of the charge has a finite dispersion
[9,10], and the charge of any particle continuously fluctu-
ates around an equilibrium mean value. In the Langevin
approach for particle charging, the distribution is a station-
ary Gaussian and the dispersion is directly proportional to
the mean charge [11]. In the present paper we study the in-
fluence of particle charge fluctuations on the traveling DL
wave and consider the conditions, when these fluctuations
can result in the instability of oscillations.

In order to describe the DL wave propagation in a
plasma crystal we choose the simplified model of the 1D
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particle string [8]. Below we assume a weak correlation
of fluctuations on the neighbor particles, so that taking
into account the real geometry of the plasma crystal
in the sheath does not yield qualitative changes of the
subsequent results. The electrostatic potential of each
particle is assumed to be screened Debye potential. The
energy of the electrostatic coupling between nth and mth
particle of the string is of the form

Wn,m �
QnQm

jxn 2 xmj
exp

√
2

jxn 2 xmj

lDe

!
, (1)

where Qn and Qm are the charges of the particles, xn and
xm are their coordinates in the string, and lDe is the elec-
tron Debye length. The corresponding force acting on
the nth particle is Fn,m � 2≠Wn,m�≠xn. Introducing the
average interparticle distance in the string, D, and the par-
ticle displacement from the steady state, dxn � xn 2 nD,
we obtain the following equation for the dimensionless
displacement yn � dxn�D:

ÿn 1 2g �yn �
1

MD

X
mfin

Fn,m� yn 2 ym� , (2)

where M is the particle mass and g is the damping
rate due to neutral gas friction [12]. Normally, the
interparticle distance in the crystal exceeds the screening
length �D�lDe � 1.5 2�, so that for the present problem
we take into account only the influence of the nearest
neighbors. Let us present the charge of each particle
as Qn�t� � �Q� 1 dQn�t�, where dQn�t� corresponds
to the random fluctuation of the charge around the
mean �Q� (angle brackets denote average over ensemble).
Assuming jyn 2 yn61j ø 1 and using Eq. (1) we have
Fn,n21 1 Fn,n11 �
�Q�2

D2 e12h�1 1 dQ̃n� ��1 1 dQ̃n21� �h 2 �1 1 h2� � yn 2 yn21�	

2 �1 1 dQ̃n11� �h 1 �1 1 h2� � yn 2 yn11�	
 , (3)

where dQ̃n � dQn��Q� and h � 1 1 D�lDe. For the traveling wave the solution of Eq. (2) with force (3) can be pre-
sented in the form yn � y�t� exp�iKnD�, where K is the wave vector. Note that for the DL wave, as well as for any elas-
tic wave in a discrete medium, the range of the wave vector values is the first Brillouin zone [13], 2p�D # K # p�D.
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Introducing the DL frequency scale

V2 �
�Q�2

MD3 �1 1 h2�e12h , (4)

and substituting Eq. (3) in Eq. (2) we transform the latter
to

ÿ 1 2g �y 1 v2�1 1 j�t�	y � f�t� , (5)

where v2 � 2V2�1 2 cosKD� and the charge fluctua-
tions are described by the following functions:

j�t� � dQ̃ 2
dQ̃1�eiKD 2 1� 1 dQ̃2�e2iKD 2 1�

2�1 2 cosKD�
,

f�t� �
h

1 1 h2 V2�dQ̃2 2 dQ̃1� .
(6)

Here dQ̃ � dQ̃n, dQ̃1, and dQ̃2 denote the charge fluc-
tuations on the “central,” “right,” and “left” particles,
respectively. We see that the traveling DL wave is de-
scribed by a damped harmonic oscillator equation (5) with
a randomly varying frequency and a random “external”
force. In order to study the properties of the stochastic
process y�t; �j	� (where �j	 denotes all possible realiza-
tions of the random variable j) we use the approximation
method of expansion over a small Kubo number [14]. In
principle, this general method allows us to obtain non-
stochastic differential equations for mean and second mo-
ments of any random function, which obeys the linear
stochastic differential equation of arbitrary order with suf-
ficiently weak and rapidly fluctuating coefficients.

Let us introduce new variables, Y1 � y and Y2 �
v21 �y. Using these variables we can reduce Eq. (5) to
the first-order vector differential equation,

�Y � vA�t�Y 1 v21f�t� , (7)

where

Y �

∑
Y1
Y2

∏
, A�t� � 2

∑
0 21

1 1 j�t� 2e

∏
,

f�t� �

∑
0

f�t�

∏
,

(8)

and e � g�v. We can present the matrix A�t� as a sum
of a constant matrix A0 and a random matrix A1�t�,

A0 � 2

∑
0 21
1 2e

∏
, A1�t� � 2j�t�

∑
0 0
1 0

∏
.

We assume that the random variable j�t� has a short auto-
correlation time tc, so that the Kubo number is small [14],q

�j2� vtc ø 1 . (9)

In this case we can expand the formal solution of Eq. (7)
over this small parameter. Keeping the first three terms
of this expansion and taking the average we obtain the
following equation for the mean �Y� which is valid for
972
time scales t * tc:

d
dt

�Y� � v

√
A0 1 v

Z `

0
�A1�t�eA0vtA1�t 2 t��

3 e2A0vt dt

!
�Y�

1
Z `

0
�A1�t�eA0vtf�t 2 t�� dt . (10)

If j�t� is a stationary random process, then the averaged
values in the integrals in Eq. (10) do not depend on t
and the equation obtained has constant coefficients. For
e ø 1 these coefficients can be calculated using the
relation

e6A0vt � e7gt

∑
cosvt 6 e sinvt 6 sinvt

7 sinvt cosvt 7 e sinvt

∏
,

which directly follows from the exact solution of Eq. (7)
with j�t� � f�t� � 0. Hence, with the accuracy O�e� we
have from Eq. (10)

d
dt

�Y� � v�A0 1 vÂ1� �Y� 1 f̂, (11)

where elements of the matrix Â1 and vector f̂,

Â1 �
1
2

"
0 0

C
�1�
jj 2C

�2�
jj

#
, f̂ � 2

∑
0

Cjf

∏

are the following constants:

C
�1�
jj �

Z `

0
Rjj�t� sin2vt dt ,

C
�2�
jj �

Z `

0
Rjj�t� �1 2 cos2vt� dt , (12)

Cjf �
Z `

0
Rjf �t�e2gt sin2vt dt .

The integrals in Eq. (12) contain correlation functions
Rjj�t� � �j�t�j�t 2 t�� and Rjf �t� � �j�t�f�t 2 t��.
We obtain these functions using Eq. (6),

Rjj�t� � �dQ̃�t�dQ̃�t 2 t��
1 2 2 cosKD

1 2 cosKD

1
�dQ̃1�t�dQ̃2�t 2 t��

1 2 cosKD

1 2�dQ̃�t�dQ̃1�t 2 t�� , (13)

Rjf�t� �
h

1 1 h2 V2��dQ̃�t�dQ̃�t 2 t��

2 �dQ̃1�t�dQ̃2�t 2 t���
sinKD

1 2 cosKD
.

Returning to the initial variable y, we finally have the
following equation for the mean displacement � y�:

d2

dt2 � y� 1 2gfl
d
dt

� y� 1 v2
fl� y� � 2vCjf , (14)
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where gfl � g�1 1 v2C
�2�
jj�4g� and v

2
fl � v2�1 2

vC
�1�
jj�2�. We see that the charge fluctuations cause a

change in the DL frequency and the damping rate.
Let us make further assumptions about the stochastic

properties of dQ̃�t�: The correlation of fluctuations on
the neighbor particles is negligible in comparison with the
autocorrelation; the fluctuations of the particle charges are
determined by fluctuations of the electron and ion fluxes
in the macroscopically equilibrium plasma. In this case
we can use the results obtained for the single particle from
the orbit motion limited theory [15,16],

�dQ̃�t�dQ̃�t 2 t�� � s̃2 exp�2VU0t� ,

�dQ̃�t�dQ̃6�t 2 t�� � 0 ,
(15)

where s̃2 is the dimensionless dispersion of the charge
distribution (normalized to �Q�2) and VU0 � t21

c is the
steady-state charging frequency [17].

In laboratory experiments the plasma crystal is located
near the edge of the sheath, and the ion drift velocity
towards the electrode u is of the order of the ion acoustic
velocity cs (and much greater than the ion thermal
velocity). Using the expressions for s̃2 and VU0 from
Ref. [15], we obtain for these conditions

s̃2 �
a 1 u2�c2

s

a�1 1 a 1 u2�c2
s �

µ
e

j�Q�j

∂
�

e
j�Q�j

,
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1 1 a 1 u2�c2

sp
2p

µ
av

2
pi

u

∂
�

acs

l
2
De

,
(16)

where a � ej�Q�j�aTe is a coefficient of the order of
unity, a is the particle radius, Te is the electron tempera-
ture, and vpi is the ion plasma frequency. Substituting
Eq. (15) in Eq. (13) and using Eqs. (12) and (14) we
obtain for v

2
fl and gfl

v
2
fl

v2 � 1 2 2s̃2 V2

V
2
U0

�1 2 2 cosKD� ,

gfl

g
� 1 1 4s̃2 V4

gV
3
U0

�1 2 cosKD� �1 2 2 cosKD� .

(17)

We see that the variation of both the frequency and the
damping rate can be either positive or negative, depend-
ing on the value of the wave vector. However, for auto-
correlation function (15) the condition (9) takes the form
s̃�V�VU0 � ø 1, so that vfl � v. In principle, for suffi-
ciently small values of g, the coefficient gfl can be nega-
tive at KD , p�3; i.e., Eq. (14) can be unstable. But as
shown below, gfl always remains positive for real condi-
tions of experiments.

The presence of the random force f�t� in Eq. (5) results
in the appearance of a stationary mean displacement � y�`

at large time scales. Assuming that gfl . 0, we have
from Eq. (14) at t ¿ g

21
fl

� y�` � 2v21Cjf � 2
hs̃2

1 1 h2

V2

V
2
U0

sinKD

1 2 cosKD
.

(18)
The stationary displacement increases as � y�` ~ K21 at
small KD. Expression (18) is valid for KD ¿ g�V, be-
cause Eq. (11) is obtained under the assumption v ¿ g.

Let us now find the equations for the second moments,
in particular, for the mean squared displacement � yy�� and
velocity � �y �y��. These equations allow us to evaluate how
the average wave energy depends on time. From Eq. (7)
we derive the equation for the products YjY

�
j0 written in

the tensor form,

d
dt

�YjY
�
j0� � vB ll0

jj0YlY
�
l0 1 v21� fjY

�
j0 1 f�

j0Yj� .

(19)

Here all the indexes change from 1 to 2 and tensor B ll0
jj0 �

Al
jd

l0
j0 1 A�l0

j0 d
l
j , where Al

j are elements of the matrix A�t�
[see Eq. (8)]. In order to check the “energy stability”
of the DL wave we can omit in Eq. (19) inhomogeneous
terms containing random force f�t�, because these terms
alone cannot cause instability when the homogeneous
equation (19) (after averaging) is stable. In the vector
form, the homogeneous equation (19) is

�W � vB�t�W , (20)

where B�t� � B0 1 B1�t� and

W �

2
664
Y1Y

�
1

Y1Y
�
2

Y2Y
�
1

Y2Y
�
2

3
775 , B0 � 2

2
664

0 21 21 0
1 2e 0 21
1 0 2e 21
0 1 1 4e

3
775 ,

B1�t� � 2

2
664

0 0 0 0
j��t� 0 0 0
j�t� 0 0 0

0 j�t� j��t� 0

3
775 .

Taking the average in Eq. (20) we obtain the equation for
the second moments �W� in the form of (homogeneous)
Eq. (10) with substitution �Y� ! �W� and A0,1 ! B0,1.
In this equation we can reduce the number of independent
variables and present the resulting equation to an accuracy
O�e� in the following form:

d
dt

�W�r � v�B0r 1 vB̂1r � �W�r , (21)

where the reduced vector �W�r and matrices B0r , B̂1r are

�W�r �

2
64 �Y1Y

�
1 �

1
2 �Y1Y

�
2 1 Y2Y

�
1 �

�Y2Y
�
2 �

3
75 ,

B0r � 2

2
4 0 22 0

1 2e 21
0 2 4e

3
5 ,

B̂1r �
1
2

2
64 0 0 0

C
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75 .
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In addition to Eq. (12), we introduce here the constant
C

�3�
jj� �

R`
0 Rjj� �t� �1 1 cos2vt� dt, where Rjj� �t� is

the correlation function of j�t� and its complex conjugate
j��t�,

Rjj� �t� � �dQ̃�t�dQ̃�t 2 t��
2 2 cosKD

1 2 cosKD

2 �dQ̃1�t�dQ̃2�t 2 t��
cosKD

1 2 cosKD

1 2�dQ̃�t�dQ̃1�t 2 t�� . (22)

The solution of the differential equation (21) is deter-
mined from the roots of the characteristic equation:
det�v�B0r 1 vB̂1r� 2 lI	 � 0, where I is the unit ma-
trix. In explicit form we obtain

l3 1 �6g 1
1
2 v2�3C

�2�
jj 1 C

�2�
jj��	l21

2v2�2 2 vC
�1�
jj�l 1 2v2�4g 1 v2�C�2�

jj 2 C
�3�
jj� �	 � 0 .

(23)

Equation (21) loses stability when any one of the coeffi-
cients in Eq. (23) becomes negative. Since v ¿ g, it is
most likely to expect that the last term in Eq. (23) may be
negative for sufficiently small g. Hence, the criterion for
the average energy of the DL wave to grow exponentially
with time is

s̃2 V2

gVU0

�2 2 cosKD� . 1 . (24)

In laboratory experiments (a � 1 10 mm, D � lDe �
102 103 mm) the typical values of frequencies (4) and (16)
are V � 30 3 3 103 s21 and VU0 � 103 105 s21. For
large particles, the charging frequency VU0 considerably
exceeds V, but for a & 1 mm these frequencies can be
comparable. Therefore, criterion (24) can be satisfied for
a plasma crystal of sufficiently small particles. For ex-
ample, the DL wave can be unstable energywise for par-
ticles of a size a � 1 mm at a pressure of about 1 Pa, when
the interparticle distance D is about 100 mm or less. This
is not the usual, but a physically realistic condition for a
plasma crystal, and we can expect that the instability due
to the charge fluctuations may be observed in experiments.
In accordance with Eq. (4), criterion (24) has sharp depen-
dence on D. Thus, even a small increase of particle density
in the crystal can result in the appearance of the described
instability.

An instability in the average energy does not necessar-
ily imply an instability of Eq. (14) for the average dis-
placement � y�. In a plasma crystal, the damping rate gfl
is positive for all physically reasonable parameters [see
Eq. (17)]. Therefore, even if the DL wave is unstable en-
ergywise, the value of � y� decreases with time and tends
to the stationary value � y�`.
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Note that in a dusty plasma the charge fluctuations
can cause an instability of oscillations only in the crystal
phase, where the discrete structure is essential and wave
propagation is determined by the charge of each separate
particle. In the gaseous phase, all the variables in the ini-
tial equations are averaged over space, so that the dis-
persion of the charge distribution tends to zero and the
fluctuations can be neglected.

In the present paper we consider only one kind of ran-
dom fluctuation which results in the appearance of the
random term in the expression for the interparticle cou-
pling force. Of course, there are also fluctuations of the
local electron temperature and electrostatic fluctuations in
the plasma. But it is noteworthy that for any kind of fluc-
tuation the resulting equation for the traveling DL wave
has the form of Eq. (5) [with the specific functions j�t�
and f�t�], so that we always can use the described method
for the subsequent investigations.
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