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Bloch Oscillations in an Array of Curved Optical Waveguides
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We propose to use periodically spaced, curved optical waveguides for observation of optical Bloch
oscillations. The refractive index distribution in this system is equivalent to the sum of a periodic term
resulting from the equal spacing of the waveguides and a linear ramp, created by the curvature. We
demonstrate numerically that light propagation in this geometry exhibits spatial Bloch oscillations with
the period depending on the radius of the curvature and the wavelength.

PACS numbers: 42.25.Bs, 42.82.Et, 78.90.+ t
In 1928 Bloch predicted that a charge carrier in an ideal
crystal placed in a uniform electric field exhibits periodic
oscillations [“Bloch oscillations” (BO)]: The carrier is ac-
celerated by the electric field until its momentum satisfies
the Bragg condition associated with the periodic potential
and is reflected. The carrier is then decelerated by the
field until it stops, completing one Bloch cycle [1]. This
periodic motion is intimately related to a Wannier-Stark
ladder (WSL) energy spectrum, the ladder of equally
spaced states with energy spacing given by the potential
drop per period [2].

There are two main obstacles to observing BO in solids:
(i) The band structure of crystals may be complex and
many types of electronic carriers, such as conduction elec-
trons and heavy and light holes, may be involved; (ii) even
for fields approaching breakdown, the mean collision-free
path of a carrier is smaller than one Bloch period, which is
inversely proportional to the period of the potential [3–5].
Only when using high-quality semiconductor superlattices
with much larger periodicities than bulk crystals did the
observation of BO become feasible, finally to be reported
in time-resolved four-wave mixing experiments [6] and
measurement of terahertz radiation from the superlattice
BO [7]. However, many-body effects can be avoided and
the original simplicity of Bloch’s model can be preserved
if one exploits neutral species, such as atoms or photons,
to observe BO and WSL. Using atoms moving in an ac-
celerating optical lattice created by two interfering laser
beams, the observations of atomic WSL and BO were re-
ported recently [8–10].

Two different approaches to create optical WSLs have
previously been discussed. It was demonstrated recently
that a WSL can be observed in a linearly chirped moiré
grating written in the core of an optical fiber [11]. How-
ever, in that geometry BO cannot be detected directly. It
was also suggested that a WSL may be observed in a di-
electric with a refractive index profile that is the sum of a
periodic and a linear term [12,13]:

n� y 1 Md� � n� y� 1 aMd , (1)
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where n� y� is a periodic function in the transverse
direction y, and aMd is a linear ramp which mimics
the effect of a uniform electric field (d is a period
discussed below, M is an integer, a is a ramp parameter).
While the requirement for the periodic potential is easily
satisfied using an array of strongly coupled waveguides,
imposing a linear variation in the index profile is more
challenging. Gradually changing the composition in the
transverse direction is very difficult. The other option is
imposing a linear change in “effective” index by linearly
varying the thickness of the guiding layer. Achieving this
uniformly is also difficult and the range of index slopes
is limited. Because of these technical difficulties, the
associated experiments have not been carried out. We
note that, in Ref. [14], a scheme is proposed where the
linear ramp is achieved using the electro-optic effect.

In this Letter, we propose a simple and practical optical
structure that can demonstrate optical Bloch oscillations
(OBO). The structure consists of an array of periodically
spaced, curved optical waveguides. The curvature plays a
central role here, effectively leading to a linear ramp in the
refractive index distribution. This ramp is superimposed
on the periodic index distribution due to the equal
spacing of the guides, as required by Eq. (1). Waveguide
geometries require light propagation at an oblique angle
to the waveguides [12,13]; as a result, OBO occur in
spatial domain, in contrast to the solid state case where
BO occur in time [5]. The Bragg reflection on the high-
index side of the structure and the total internal reflection
(TIR) on the low-index side trap the light in the transverse
direction resulting in spatial oscillations of the path of
light along the waveguides (see Fig. 1). The relation
of these oscillations to the electronic BO is similar to
the relation between the (spatial) oscillations in intensity
when light propagates through two coupled waveguides,
and the (temporal) quantum beats of electrons in two
coupled quantum wells [15].

The advantages to observing BO in a curved wave-
guide array are as follows: (i) There is only one type of
“carrier”—photons, and essentially this is a single band
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FIG. 1. Top: Schematic of (a) a curved waveguide array and
(b) its conformal transformation. The dashed arrows illustrate
the light confinement mechanisms—Bragg reflection on one
side of the structure and TIR on another side. Bottom: (a)
Refractive index in the curved array, and (b) the transformed
refractive index. The refractive indices of the guides and the
surrounding material are n2 and n1, respectively.

structure. (ii) There are no other excitations, such as
phonons, and no carrier-carrier collisions that lead to de-
phasing and ultimately the destruction of BO. (iii) Fab-
rication of a curved waveguide array is not more difficult
than any standard photonic circuit. The linear potential
is controlled by changing the radii which can be very ac-
curately defined. (iv) The OBO can be tuned by varying
the wavelength. Here we present an analytical background
for OBO in curved waveguide arrays, perform numerical
simulations showing OBO along the curves and the corre-
sponding WSL spectrum, and finally address some of the
experimental issues associated with observing OBO.

To analyze light propagation in curved waveguides, we
use the approach of Heiblum et al. [16], based on con-
formal transformations. To illustrate this method, we
consider a coordinate system u, y which is defined with
respect to the original coordinates y and z by W �
u 1 iy � f�X� � f� y 1 iz�. With the help of the
Cauchy-Riemann relations (≠u�≠y � ≠y�≠z, ≠u�≠z �
2≠y�≠y), the two-dimensional scalar wave equation
for the envelope function of the light field, E�u, y�, is
expressed as"

�2
u,y1

Ç
dX
dW

Ç2
k2

0n2
eff�u, y�

#
E�u, y� � 0 , (2)

where k0 is the wave number of the light in vacuum, neff
is the effective index, and �2

u,y � �≠2�≠u2� 1 �≠2�≠y2�.
As shown in Ref. [16], a logarithmic conformal trans-

formation,

W � R ln�X�R� , (3)

for which
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Ç
dX
dW

Ç
� exp�u�R� , (4)

where R is a radius of the curvature, converts curved
boundaries in the X plane [see Fig. 1(a)] into straight
ones in the W plane [see Fig. 1(b)]. The transformed
refractive index in this equivalent structure is a product
of exp�u�R� and the refractive index in the appropriate
region of the curved guide. For a typical waveguide array,
the coordinate u varies on a micrometer scale, whereas
R varies on a millimeter scale. Thus, the difference
between exp�u�R� and its Taylor expansion �1 1 �u�R��
is virtually indistinguishable. Therefore, the ramp in
the refractive index distribution can be approximated as
linear with the ramp parameter a � neff�R, making this
geometry suitable for observation of OBO.

Following the argument in Ref. [13], we obtain a rough
estimate for the transverse localization length of the OBO,
L, using the analogy between the behavior of waveguide
modes and plane waves with wave vector components ku

and ky . Equation (2) requires that

k2
u 1 k2

y � n2
eff�1 1 �u�R��2k2

0 , (5)

where we neglect the rapidly varying periodic component
of the refractive index for simplicity. Because neff does
not depend on y, ky must be a conserved quantity. The
other component, ku, is confined by two limiting values:
ku � 0 at u � u1 (TIR) and ku � p�d at u � u2 (Bragg
reflection). Substitution of these values into Eq. (5) and
taking into account the conservation of ky leads to

n2
eff�1 1 �u1�R��2k2

0 � n2
eff�1 1 �u2�R��2k2

0 2 �p�d�2.

(6)

Neglecting small terms O�a2u2� and defining the trans-
verse localization length L � u2 2 u1, we obtain

L �

µ
l

2d

∂2 R

2n2
eff

, (7)

where l is the wavelength, and d is a spacing between the
waveguides (the period). Equation (7) is valid in the limit
when the light is weakly bound to the guides (an optical
analog of the nearly free electron model), and, in fact, it
gives an upper limit for L.

The spatial period of the OBO, l, is derived following
the same procedure as for the electronic WSL [5]:

l �
lR

dneff
. (8)

As seen from Eqs. (7) and (8), both the transverse width
of OBO and the period depend linearly on R. This is
similar to the solid state case where the temporal period
and the width of the BO depend on the electric field. The
temporal period, for example, equals h��eEd� [5]. In our
case, the equivalent spatial period (8) has an additional
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wavelength dependence which has no analogy in the
electronic BO and provides an extra degree of freedom
allowing us to tune the OBO.

In numerical simulations, we model light propagation
in an array of curved SiO2-based waveguides with the
following structural and material parameters: The period
is d � 6 mm, the guides’ width is w � 2.5 mm, n1 �
1.45, and n2 � 1.4594 (neff � 1.455). For the chosen
parameters, an individual waveguide is single moded. By
properly exciting this curved array at one end, we launch
a superposition of WSL eigenmodes (which correspond to
the WSL eigenstates in the electronic case). As an input
in the simulations, we launch a Gaussian field distribution
with l � 1.5 mm (unless specified otherwise). The input
is centered at the middle of one of the waveguides (the
“central” guide). The number of waveguides in the array,
N , is more than 70, so the periodic structure can be
considered as infinite. Note that the similar results are
obtained for more realistic arrays (N less than 20).

We solve Eq. (2) using a beam propagation method
[17] and compute the intensity of the light field, I�u, y� �
jE�u, y�j2. Figure 2 shows the light trajectories in an array
with R � 6 mm in the X plane for a propagation angle of
90± corresponding to a propagation length of about 9 mm.
As a result of the Wannier-Stark localization, the light is
trapped within a narrow region of the array which has a
transverse size of about five waveguides. The observed
oscillations in the light trajectories are OBO.

The physical effect of curvature in our model is equiva-
lent to one of uniform electric field in the electronic
BO. Namely, a decrease in R leads to a steeper ramp
(or stronger electric field in the electronic case) and en-
hances the light confinement. Indeed, this can be seen
from Figs. 3(a) and 3(b) where the light trajectories for
two different R values, 12 and 6 mm, are presented. The
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FIG. 2. Contours of equal light intensity in a curved wave-
guide array with R � 6 mm and an input beam FWHM �
10 mm (X plane). The transverse size of the contours is mag-
nified by a factor of 70.
spatial period of the OBO in these figures is found to be
2.06 and 1.03 mm, respectively, consistent with Eq. (8).
A more detailed comparison of the intensity distributions
in Figs. 3(a) and 3(b) shows that the transverse localiza-
tion length of the OBO is consistent with Eq. (7), in par-
ticular, its linear dependence on R.

The contours in Fig. 3(b) exhibit small radiation losses
on the right-hand side of the array where the trans-
formed refractive index is greatest; the magnitude of these
losses amounts to less than 1% per OBO period for these
parameters. Recall that, without the periodicity, the light
would travel freely towards the region of highest trans-
formed index on the right. The Bragg reflection associ-
ated with the periodic array restricts this free propagation,
and thus reduces the radiation losses, however, it does not
completely eliminate them. The residual losses are due
to the optical equivalent of Landau-Zener tunneling from
solid state physics. The tunneling can be reduced by in-
creasing the radius R [see Fig. 3(a)].

FIG. 3. Contours of equal light intensity associated with OBO
(W plane). The radius of curvature is (a) R � 12 mm and
(b) R � 6 mm, and the input beam FWHM � 15 mm.
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FIG. 4. Calculated transmission spectrum of the central wave-
guide. The propagation distance is chosen to be large (z0 �
10 mm which corresponds to 10l at l � 1.5 mm and R �
6 mm), and the input beam FWHM � 5 mm. The intensity
values are normalized to the input intensity.

The fact that the intensity distributions in Figs. 2 and 3
are periodic indicates that WSL modes are equally spaced
[5]. Thus, there is a ladder of the photonic orbits which
are displaced by the period d. Our geometry thus shares
this key characteristic with the electronic WSL.

To explore the wavelength dependence of OBO, we cal-
culate the transmission spectrum of the central guide,
i.e., the light intensity emerging from this guide as a
function of wavelength. We observe a sequence of peaks
in I�l� dependence (see Fig. 4) which are due to OBO.
In the frequency domain, the peaks are equally spaced.
The spacing between them, Df, is calculated from the
condition that the ratio z0�l must be an integer. Using
Eq. (8), we obtain

Df �
cR

dneffz0
. (9)

The strong wavelength dependence of the transmission
spectrum, as shown in Fig. 4, has possible applications
as a wavelength filter.

The numbers used in the simulations are appropriate
for silicon optical bench technology, i.e., integrated sil-
ica waveguides on silicon substrate. This technology rou-
tinely produces high-quality, low-loss, and very complex
photonic circuits. Fabricating the proposed structures is
relatively simple with this technology. A tunable laser
can be used to excite the array and the output intensity
can be observed with a camera. By monitoring the small
radiation losses shown in Fig. 3(b), one can confirm the
existence of OBO directly. By varying the wavelength,
the OBO properties can be further probed, and the validity
of Eq. (8) can be assessed. Also, using recent innovations
in the silicon optical bench technology, one may integrate
optical gain and optically nonlinear materials, which may
966
allow the exploration of new physical properties of BO,
which have no analog in the electronic case.

In conclusion, we have proposed to use curved optical
waveguides for observation of optical Bloch oscillations.
The refractive index distribution in this system is equiva-
lent to the sum of a periodic term resulting from the equal
spacing of the waveguides and a linear ramp, created by
the curvature. We have demonstrated numerically that the
light propagation in this geometry exhibits spatial Bloch
oscillations with the longitudinal period depending on the
radius of the curvature and the wavelength. The wave-
length dependence is a unique feature of OBO which has
no analogy in the solid state case.
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