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Wigner Symmetry in the Limit of Large Scattering Lengths
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We note that, in the limit where the NN 1S0 and 3S1 scattering lengths, a�1S0� and a�3S1�, go to
infinity, the leading terms in the effective field theory for strong NN interactions are invariant under
Wigner’s SU(4) spin-isospin symmetry. This explains why the leading effects of radiation pions on the
S-wave NN scattering amplitudes vanish as a�1S0� and a�3S1� go to infinity. The implications of Wigner
symmetry for NN ! NN axion and gd ! np are also considered.
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Wigner first proposed that SU(4) spin-isospin transfor-
mations are an approximate symmetry of the strong inter-
actions [1]. The implications of this symmetry for nuclear
physics were studied in Ref. [2]. It has been shown that
Wigner symmetry is obtained in the large number of colors
limit of quantum chromodynamics (QCD) [3]. In this Let-
ter we show that Wigner’s SU(4) is a symmetry of the
effective field theory for low momentum nucleon inter-
actions in the limit where the S-wave scattering lengths
are infinite, and contact interactions with derivatives are
neglected.

Effective field theory methods are applicable to nuclear
physics [4,5]. Recently a new power counting has been de-
veloped for effective field theory in the two-nucleon sector
[6,7]. It is appropriate to the case where the scattering
lengths a�1S0� and a�3S1� in the 1S0 and 3S1 channels are
large. As a�1S0� and a�3S1� go to infinity the couplings for
the lowest dimension two-body operators flow to a nontriv-
ial fixed point [5,6]. Higher dimension two-body opera-
tors (and, if the pion is not integrated out, pion exchange)
are corrections that can be treated perturbatively. Neglect-
ing these corrections the effective field theory is scale in-
variant when the scattering lengths go to infinity. In this
paper we note that in this limit the theory is also invariant
under Wigner’s SU(4) spin-isospin transformations [1],

dN � iamnsmtnN , N �

µ
p
n

∂
. (1)

In Eq. (1), sm � �1, �s�, tn � �1, �t�, and amn are infini-
tesimal group parameters (we will use the notation that
Greek indices run over �0, 1, 2, 3�, while Roman indices
run over �1, 2, 3�). The s matrices act on the spin de-
grees of freedom, and the t matrices act on the isospin de-
grees of freedom. [Actually the transformations in Eq. (1)
correspond to the group SU�4� 3 U�1�. The additional
U(1) is a baryon number and corresponds to the a00
term.]

Consider first the effective field theory for nucleon
strong interactions with the pion degrees of freedom inte-
grated out. The Lagrange density is composed of nucleon
fields and has the form L � L1 1 L2 1 . . . , where Ln

denotes the n-body terms. We have
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where M is the nucleon mass and the ellipses denote higher
derivative terms. Here s � 1S0 or 3S1, and the matrices
P

�s�
i project onto spin and isospin states

P
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�is2� �it2ti�p
8
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The Lagrange density L2 can also be written in a different
operator basis:

L2 � 2
1
2

�CS
0 �NyN�2 1 CT

0 �Ny �sN�2� 1 . . . , (4)

where C
�1S0�
0 � CS

0 2 3CT
0 and C

�3S1�
0 � CS

0 1 CT
0 . In

this basis it is the CT
0 term that breaks the SU(4) symmetry

(as well as some of the higher derivative terms).
Neglecting higher dimension operators in Eq. (2), the

1S0 and 3S1 NN scattering amplitudes arise from the sum
of bubble Feynman diagrams shown in Fig. 1. The loop
integration associated with a bubble has a linear ultraviolet
divergence and consequently the values of the coefficients
C

�s�
0 depend on the subtraction scheme adopted. In this

paper we use dimensional regularization as the regulator.
In minimal subtraction the coefficients are subtraction
point independent, and the center of mass scattering ampli-
tude is

A�s� �
2C̄

�s�
0

1 1 i Mp
4p C̄

�s�
0

, (5)

where the bar is used to denote minimal subtraction and
p is the magnitude of the nucleon momentum. The
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FIG. 1. The leading order contribution to the NN scattering
amplitude.
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S-wave scattering amplitudes can be expressed in terms
of the phase shifts d�s�,

A�s� �
4p

M
1

p cotd�s� 2 ip
, (6)

and it is conventional to expand p cotd�s� in a power series
in p2,

p cotd�s� � 2
1

a�s� 1
1
2

r
�s�
0 p2 1 . . . , (7)

where a�s� is the scattering length and r
�s�
0 is the effective

range. [Strictly speaking, Eq. (6) holds only in the 1S0
channel. The 3S1 channel is more complicated because
of 3S1-3D1 mixing; however, the mixing is a small effect.]
Comparing Eq. (5) with Eqs. (6) and (7), we see that keep-
ing only the lowest dimension two-body terms corresponds
to neglecting the effective range and the higher powers of
p2 in Eq. (7),

A�s� � 2
4p

M
1

1�a�s� 1 ip
, (8)

and that

C̄
�s�
0 �

4pa�s�

M
. (9)

If a�s� is of natural size then the dimension six operators
in Eq. (2) are irrelevant operators. It is then appropriate
to perform a perturbative expansion of the amplitude in a
power series in C̄

�s�
0 , which corresponds to an expansion

in pa�s�. Terms cubic in C̄
�s�
0 are not more important

than the tree level contribution of two-body operators
with two derivatives. This situation would be similar
to the familiar application of chiral perturbation theory
to pp scattering. However, in nature the scattering
lengths are very large: a�1S0� � 223.714 6 0.013 fm
and a�3S1� � 5.425 6 0.001 fm, or 1�a�1S0� � 28.3 MeV
and 1�a�3S1� � 36 MeV [8]. The coefficients C̄

�s�
0 are

large and are very different in the 1S0 and 3S1 channels.
Nonetheless, for p ¿ 1�a�s�, the amplitudes become
A�s� � 4pi��Mp�. The equality of the 1S0 and 3S1 am-
plitudes is consistent with expectations based on Wigner
symmetry. The p dependence is consistent with expec-
tations based on scale invariance, since the cross section
s�s� � 4p�p2. (The scale transformations appropriate
for the nonrelativistic theory are x ! lx, t ! l2t, and
N ! l23�2N .)

In minimal subtraction, if p ¿ 1�a�s�, successive terms
in the perturbative series represented by Fig. 1 get larger
and larger. Subtraction schemes have been introduced
where each diagram in Fig. 1 is of the same order as the
sum. It is in these “natural” schemes that the fixed point
structure of the theory and Wigner spin-isospin symme-
try are manifest in the Lagrangian. One such scheme is
power divergence subtraction (PDS) [6], which subtracts
not only poles at D � 4 but also the poles at D � 3
932
(which correspond to linear divergences). Another such
scheme is the off-shell momentum subtraction scheme
(OS) [5,9]. In these schemes the coefficients are sub-
traction point dependent, C

�s�
0 � C

�s�
0 �m�. Calculating the

bubble sum in PDS or OS gives
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C
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1 1
M
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where

C
�s�
0 �m� � 2

4p

M
1

m 2 1�a�s� . (11)

For m 	 p the contribution of every diagram in the
sum in Fig. 1 is roughly the same size. Furthermore, as
a�s� ! ` the coefficients C

�s�
0 �m� ! 24p��Mm� which

is the same in both channels. In this limit CT
0 �m� �

�C�3S1�
0 �m� 2 C

�1S0�
0 �m���4 � 0 and

L2 � 2
2p

Mm
�NyN�2 1 . . . . (12)

The first term in Eq. (12) is invariant under the Wigner
spin-isospin transformations in Eq. (1). The ellipses in
Eq. (12) denote terms with derivatives, and they will
not be invariant under Wigner symmetry even in the
limit a�s� ! `. However, these terms are corrections
to the leading order Lagrange density and their effects
are suppressed by powers of p�L (where L is a scale
determined by the pion mass and LQCD). In the region
1�a�s� ø p ø L, Wigner spin-isospin symmetry is a
useful approximation and deviations from this symmetry
are suppressed by CT

0 �m� ~ �1�a�1S0� 2 1�a�3S1�� and by
powers of p�L. The measured effective ranges are

r
�1S0�
0 � 2.73 6 0.03 fm and r

�3S1�
0 � 1.749 6 0.008 fm

[8]. A rough estimate of the scale is 1�L 	 �r �1S0�
0 2

r
�3S1�
0 ��2 � 0.49 fm, or L 	 400 MeV. In PDS or OS,

the limit a�s� ! ` is clearly a fixed point of C
�s�
0 �m�

since m≠�≠m�mC
�s�
0 �m�� � 0. Also, scale invariance is

manifest since m ! m�l under scale transformations.
Wigner symmetry is useful even though a�1S0� and a�3S1�

are very different. This is because, for 1�a�s� ø p ø

L, corrections to the symmetry limit go as �1�a�1S0� 2

1�a�3S1�� rather than �a�1S0� 2 a�3S1��. This is similar to the
heavy quark spin-flavor symmetry of QCD [10], which
occurs in the mQ ! ` limit. Heavy quark symmetry is a
useful approximation for charm and bottom quarks even
though mb�mc 
 3.

As an application of the symmetry, consider NN !
NN axion, which is relevant for astrophysical bounds on
the axion coupling [11]. The axion is essentially mass-
less. If the axion has momentum �k, and the initial nucle-
ons have momenta �p and 2 �p then the final state nucleons
have momenta �q 2 �k�2 and 2 �q 2 �k�2. Energy con-
servation implies that p2�M � q2�M 1 k2��4M� 1 k,
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where p � j �pj, q � j �qj, and k � j �kj. In the kinematic
region we consider q, p ¿ k, and the axion momentum
can be neglected in comparison with the nucleon mo-
menta. In this limit the terms in the Lagrange density
which couple the axion to nucleons take the form

Lint � g0�=jX0�j �x�0NysjN 1 g1�=jX0�j �x�0 Nysjt3N ,

(13)
where X0 is the axion field and g0, g1 are the axion-
nucleon isosinglet and isovector coupling constants. As-
sociated with spin-isospin symmetry are the conserved
charges

Qmn �
Z

d3 xNysmtnN , (14)

and the axion terms in the action are proportional to these
charges

Sint � g0

Z
dt�=jX0�

Ç
�x�0

Qj0

1 g1

Z
dt�=jX0�

Ç
�x�0

Qj3. (15)

The charge Qj0 is the total spin of the nucleons which
is conserved even without taking the a�s� ! ` limit;
however, Qj3 is conserved only in the a�s� ! ` limit
(and also in the limit a�1S0� ! a�3S1�). Since conserved
charges are time independent, only a zero energy ax-
ion couples in Eq. (15), and these terms will not con-
tribute to the scattering amplitude. We conclude that
NN�1S0� ! NN�3S1�X0 vanishes in the limit a�s� ! `

and that NN�3S1� ! NN�3S1�X0 vanishes for all scatter-
ing lengths. [NN�1S0� ! NN�1S0�X0 vanishes due to an-
gular momentum conservation since the axion is emitted
in a P wave.] Calculation of the Feynman diagrams in
Fig. 2 shows that the leading order 3S1 ! 3S1 scatter-
ing amplitude does indeed vanish, and the NN�1S0� !
NN�3S1�X0 amplitude is

A � g1
4p

M

�k ? �e�

k

∑
1

a�1S0� 2
1

a�3S1�

∏ ∑
1

1�a�1S0� 1 ip

∏

3

∑
1

1�a�3S1� 1 iq

∏
, (16)

where �e is the polarization of the final 3S1 NN state. This
is proportional to �1�a�1S0� 2 1�a�3S1�� and is consistent
with our expectations based on the Wigner symmetry.
= + + + ...
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FIG. 2. Graphs contributing to NN ! NN axion at leading order. The solid lines denote nucleons and the dashed lines are
axions.
Coupling of photons to nucleons occurs by gauging
the strong effective field theory and by adding terms
involving the field strengths �E and �B. In the kinematic
regime where the photon’s momentum is small compared
to the nucleons’ momentum, the part of the action
involving the field strengths is

Sint �
e

2M

Z
dt Bj

Ç
�x�0

�k0Qj0 1 k1Qj3� 1 . . . ,

(17)

where k0 and k1 are the isosinglet and isovector nucleon
magnetic moments in nuclear magnetons, and the ellipses
denote subdominant terms. The term proportional to k1
in Eq. (17) gives the lowest order contribution to the
amplitude for gd ! np�1S0�. The form of the coupling
above implies that, like the axion case, this amplitude is
proportional to �1�a�1S0� 2 1�a�3S1��.

So far we have considered an effective field theory with
the pions integrated out. It is straightforward to include
the pion fields, and this is expected to increase the range
of validity of the momentum expansion. Pion exchange
can be separated into two types, potential and radiation.
Potential pions have k0 	 k2�M, where k0 is the pion
energy and k is the magnitude of the pion momentum.
Radiation pions are nearly on-shell; i.e., k0 	

p
k2 1 m2

p .

With the power counting in Ref. [6], C
�s�
0 �m� gives the

leading order S-wave NN scattering amplitude, while
potential pion exchange and four-nucleon operators with
two derivatives enter at next-to-leading order. As our last
example, we discuss the corrections to NN scattering due
to radiation pions [12]. As pointed out in Ref. [12], one
should perform a multipole expansion on the coupling
of radiation pions to nucleons. The first term in the
multipole expansion is

Sint � 2
gAp
2 f

Z
dt�=ipj�

Ç
�x�0

Qij , (18)

where gA 
 1.25 is the axial coupling and f 
 131 MeV
is the pion decay constant. (Radiation gluons in NRQCD
and radiation photons in NRQED are also treated in this
way [13].) Radiation pions also couple to a conserved
charge of the Wigner symmetry in the large scattering
length limit. (A multipole expansion is not performed on
the coupling to potential pions so they do not couple to
933
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a conserved charge.) This implies that only a radiation
pion with k0 � 0 will couple, which is incompatible with
the condition k0 	

p
k2 1 m2

p , so in the symmetry limit
radiation pions do not contribute to the scattering matrix
element. In Ref. [12], it was shown by explicit computa-
tion that graphs with one radiation pion and any num-
ber of C

�s�
0 ’s give a contribution that is suppressed by

at least one power of 1�a�3S1� 2 1�a�1S0�. This suppres-
sion was the result of cancellations between many differ-
ent Feynman diagrams. Wigner symmetry guarantees that
the leading contribution of graphs with an arbitrary num-
ber of radiation pions is suppressed by inverse powers of
the scattering lengths.

So far, the analysis in this paper has been specific to
the two-nucleon sector; however, Wigner symmetry is
observed in some nuclei with many nucleons. Terms with
no derivatives also occur in L3 and L4, while higher-
body terms of this type vanish because of Fermi statistics.
Fermi statistics implies that there is only one no-derivative
four-body term, �NyN�4, which is invariant under Wigner
symmetry. Furthermore, there is only one such term in
L3, �NyN�3, which is also invariant [14]. To see this,
note that the three nucleon and antinucleon fields must be
combined in an antisymmetric way. The three N’s (Ny’s)
combine to a 4̄ (4) of SU(4). Combining the 4 and 4̄ gives
1 © 15; however, the 15 does not contain a singlet under
the spin and isospin SU(2) subgroups.

Recent progress [15] in the three-body sector suggests
that the �NyN�3 contact interaction is not subleading
compared with the effects of the first two-body term in
Eq. (12). (For another point of view see Ref. [16].) If the
higher-body operators with derivatives can be treated as
perturbations, then this Letter suggests that approximate
Wigner symmetry in nuclear physics is a consequence of
the large NN scattering lengths and some simple group
theory.
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