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Stochastic Phase Switching of a Parametrically Driven Electron in a Penning Trap
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Fluctuation-induced switching of driven bistable systems, far from equilibrium, has been the focus
of theoretical analysis and analog circuit computations. A parametrically driven electron in a Penning
trap is shown to be a nearly ideal experimental realization. Noise applied to this dynamic double well
system produces random switching between two steady-state oscillations which differ in the oscillation

phase by 180°.

PACS numbers. 05.40.Ca, 05.45.Ac, 05.70.Ln, 32.80.F

The study of fluctuation-induced switching between
the two stable states of a bistable system began with
Kramers's calculation of the rate of escape for a particle
in a one dimensional double well potential [1], a sys
tem in equilibrium insofar as no probability currents are
present in the steady state. Early experiments observed
the switching between two modes [2] and two propaga-
tion directions [3] of a laser in equilibrium. Theoretica
techniques have been extended to determine escape rates
[4] and paths [5] for driven bistable systems which are
far away from equilibrium in that divergence-less proba-
bility currents are present in the steady state. The only
detailed experimental studies of such systems, however,
have been analog computations done with circuits con-
structed to mimic the desired equation of motion [6,7].

In this Letter, experimental studies of a one-electron
oscillator provide the first systematic study of switching
in a driven, bistable physica system that is far from
equilibrium. A single electron in a Penning trap is
a nearly ideal redization of such a bistable oscillator
when it is driven parametrically [8,9]. Noise induces
switching between two steady-state oscillations which
differ in their oscillation phase by 180°. The observed
transitions are randomly spaced in time. The average
transition rate depends upon the noise intensity, upon the
strength and frequency of the parametric drive, and upon
the adjustable nonlinearity of the oscillator. We compare
to a recent theoretical model intended to describe our
system [10].

The isolated electron oscillates about the center of a
Penning trap [11] —a superposition of a B = 3.6 T mag-
netic field and a nearly ideal electrostatic quadrupole po-
tential. The potential in this cylindrical Penning trap [12]
arises from voltages applied to five copper electrodes[13],
al of which are symmetric about an axis Z in the direction
of B (Fig. 1). The electrodes, and a completely surround-
ing vacuum enclosure, are cooled to 4.2 K by thermal
contact to liquid helium, producing a vacuum measured to
be better than 5 X 10~!7 Torr in a similar apparatus [14].
The electron oscillator is thus not disturbed by collisions,
observed earlier [15], which would prevent the observa-
tion of noise-induced switching.
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Two of the three oscillatory motions of the trapped elec-
tron, both circular and perpendicular to the magnetic field,
are neglected because their orbit sizes and kinetic energies
can be kept negligibly small. The cyclotron motion at fre-
quency v = 99.6 GHz is damped to essentially its lowest
guantum state by spontaneous emission. Theradiation rate
is enhanced by a resonant coupling to the TE;5 radiation
mode of the cylindrical trap cavity [16]. The magnetron
orbit, at much lower frequency v,, = 19 kHz, is kept very
small by sideband cooling [11].

The nearly harmonic axia oscillationalong? ~ Bisthe
focus of this work. The oscillation frequency, w. /27 =
61.6 MHz, depends upon the ratio of the electron’s charge
g and mass m, and upon the potential applied between
the “end cap” and “ring” electrodes. Consider an elec-
tron on the trap axis, at a dimensionless location z from
the center of the trap (measured in terms of a trap dimen-
sion d = 0.354 cm [11], so that z << 1). The electron
moves along the axis under the influence of a restoring
force —mw?2z[1 + A42% + Aez*], with the small “anhar-
monicity” terms proportional to A4 and A¢ quantifying its
nonlinearity. By varying the voltage applied to the two
“compensation” electrodes, A4 can be tuned to A, = 0,
while A¢ changes only dightly about the value A¢ =
—0.27. The axial oscillation induces an oscillating cur-
rent I through a resonant LCR circuit. Power lost in
the circuit (I>R) weakly damps the oscillation at a rate
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FIG. 1. Outline of the electrodes of the Penning trap. Gaps
between electrodes are too small to be visible.
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y. = (10 ms)~!'. The induced voltage (IR) reveals the
amplitude and phase of the axial oscillation.

The axia oscillation of the electron is driven paramet-
rically by a strong coherent driving force near frequency
2w,, and aso directly at frequencies near w, by weak
fluctuating noise. The strong drive, hmw?z cos(wat),
comes from modulating the trapping potential at nearly
twice the resonant frequency of the oscillator, at w; =
2(w, + €) with € < w,. This parametric driving force
excites a nearly resonant electron oscillation at half the
drive frequency, wy/2 = w, + €, an example of the pe-
riod doubling that occurs when a nonlinear oscillator is
strongly driven.

The second drive is a fluctuating noise force mfy ap-
plied to one end of the trap to directly and resonantly
drivethe electron’saxial motion. Added electrical noiseis
“white” (i.e., frequency independent) over a 2 kHz band-
width centered on w_, which is wider than all frequency
widths relevant for the electron. As a confirmation, dou-
bling the bandwidth of the applied noise does not change
the rates of the transitions it induces. The applied noise
power is parametrized later using the effective tempera
ture Ty to which the resistor in the detection LCR cir-
cuit would need to be heated to produce Johnson noise
of the same power per unit bandwidth. The relative
power of radio frequency noise applied to atrap electrode
can be accurately varied, but absolute measurements are
more difficult. When the applied noise is removed, weak
residual noise (perhaps from hard to measure trapping po-
tential fluctuations that survive a 10 s RC low pass filter)
continues to drive the oscillator.

The differential equation of motion for this driven axial
electron oscillator is thus

4+ y.2 + 0l + heosogtlz +
/\4wzzz3 + A6wz215 = fn. (D

For small axial excitations, the nonlinear terms in Eq. (1)
are negligible, and this equation reduces to the familiar,
damped Mathieu equation [17] in the absence of noise
(i.e., fv = 0). The oscillation amplitude A grows expo-

nentially when the strength of the parametric drive, (h),
exceeds the threshold iy = 2y, /w,, provided that detun-
ing of the parametric drive (e) is within the excitation
range e- < € < €4+ Where

€ = i%\/hz — 1. @)

Notice that for a drive strength well above threshold, e
is ameasure of the strength of the parametric drive.

The nonlinear terms in the differential equation grow
rapidly as z grows. This arrests the exponential growth
and results in a steady-state oscillation [9],

z(t) = Acod(w, + €)t + V], (3)

5 3
%Au %A2+e+ —e=0, (4

SnQY) = hy/h. (5)

This solution of Eq. (1) (for fy = 0, A¢ < 0, and small
A4) has a parabolic line shape for the square of the
oscillation amplitude, A. Figure 2a shows the measured
excitation range and amplitude, superimposed upon a
parabolic line shape (dashed) for the parametrically driven
electron oscillator when the drive frequency is increased
during the measurement. We initially observe the same
curve when sweeping the drive frequency downward.
Once excited, however, the excitation persists even when
the drive is swept downward in frequency into the range
€ < e—. The expected hysteresis in this frequency range
corresponds to the amplitude A taking either the value
given by Eq. (4) or A = 0. The measured location of
the resonance edge at drive detuning € = e+ changed
slowly during the many hours over which phase flips
were measured for a fixed drive frequency and strength,
because the trapping potential and hence w, were slowly
drifting. Error barson e — € include the drifts tolerated
during measurements.

The bistability, or “double well,” arises dynamically
in this parametrically driven system because the phase
¥, of the eectron’s steady-state oscillation, can have
either of two values separated by 180°, as described by
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(a) Observed parametric resonance of a single electron. (b) Phase space of a parametrically excited oscillator, with stable

attractors labeled “S;” and an unstable equilibrium labeled “U.” The line traces the separatrix between two basins of attraction.
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Eqg. (5). Figure 2b shows the two steady-state attractors
(labeled “S’) within the phase space for this oscillator,
for e- < e <ey and h > hy, in a reference frame
rotating a w,/2. Any transient excursion within the
gray spira eventually damps to the stable attractor within
that spiral. Transient excursions within the white spira
similarly damp to its attractor. A novel feature is that
these relaxations are very underdamped. The origin is an
unstable solution (*U”) for which there is no excitation
amplitude and hence no uniquely determined oscillation
phase.

Transitions between the two stable phases occur when
noise fluctuations [i.e., fx # 0 in Eq. (1)] carry the elec-
tron across the separatrix—the boundary between the
gray and white regions in Fig. 2b. The measured phase
of the electron’s parametrically driven axial oscillation
(Fig. 3a) then abruptly changes by 180° as the oscillator
switches from one attractor to the other. The simultane-
ously measured amplitude (Fig. 3b), averaged witha 1 sec
filter, shows that essentially every phase flip is accompa-
nied by a collapse and regrowth of the oscillation ampli-
tude. The most likely phase space trajectory between the
attractors thus goes through or at least very near the un-
stable point U. This observation is consistent with the
theoretical model [10].

The surprise here is that nearly every amplitude col-
lapse (signifying that the system is near the unstable point
U) is accompanied by a phase flip. We might expect that
a phase flip would occur for only half of the amplitude
collapses [10]. With no oscillation amplitude at point U,
there is no defined oscillation phase. Following the oscil-
lation collapse, we would then expect the parametrically
driven oscillation to grow, with either oscillation phase
being equally likely. Instead it seems that the amplitude
collapse is rarely complete enough for the electron to lose
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FIG. 3. Measured time series shows phase flips (8 and
corresponding amplitude collapses (b) stimulated by residual
noise, along with an exponentially decaying histogram of
the time between phase flips (c). Three amplitude collapses,
marked with arrows, lack a corresponding phase flip.

memory of its oscillation phase, and that the preferred tra-
jectory in phase space goes past the unstable point rather
than reversing in direction. An alternative explanation
would be that amplitude collapses without phase flips are
too short to be observed, but we know of no mechanism
to cause such an asymmetry. This remarkable disagree-
ment with the theoretical analysis begs for explanation.
Perhaps an explanation can be found which is based upon
the weak residua noise being less white than is assumed
in the theoretical model.

Transitions between the two stable states of our double
well are shown to be random insofar as a histogram of
the time intervals between phase flips is an exponential
(Fig. 3c). The average transition rate I' can thus be
determined from an exponential fit to the histogram, or
equivalently by dividing a large number of observed flips
by the time interval in which they occurred.

In Kramers's initia study of the rate of escape from a
potential well [1,18], and in later extensions to systems
driven away from equilibrium, the rate of escape from
an attractor depends exponentially upon an activation
energy £ and a diffusion constant D ~ Ty as I' ~
e E/D_In the recent theoretical model [10], transitions
induced by weak white noise take place via rare, large
fluctuations which take the system from one attractor
to the unstable equilibrium point U. The expected
exponential dependence upon E/D implies that only the
most probable path between an attractor and the unstable
point will contribute to the probability of making a
transition. A variationa technique was used to identify
this most likely path. For a strong parametric drive
(h > hy) and for nonlinearity parameter A4 tuned to
A4 = 0, the theoretical analysis suggests that

E 1 (e+ — €)°
—_~ 6
DTy (e ©
with exponents related by b = a — 1/2. For a paramet-
ric drive tuned near the upper edge of the excitation band,
at e = €4, theconstantsarea = 3/2 and b = 1. Unfor-
tunately, the oscillation amplitude here is smaller than is

required to reliably measure the oscillation phase. Away
from the edge, fitting the author's numerical solution
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FIG. 4. (a) Rate of phase flips driven by residual noise ver-
sus detuning of a parametric drive with e, /27 = 100 Hz
(b) The rate increases with added noise, asillustrated for detun-
ing (e+ — €)/27m = 50 Hz. The solid line is an exponential
fit and the dashed line is the residua flip rate due to intrinsic
noise.
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FIG. 5. Flip rates versus number of electrons for given
detunings and strengths of the parametric drive.

yields a = 1 to within 10% over the range that we were
able to access experimentally.

We looked experimentally to see if In[' ~ —E/D be-
haved as the predicted power laws in e+ — €, in e+ and
in Ty. Figure 4a and similar examples for different e,
(essentialy different drive strengths) show that if we vary
only the detuning from the upper edge of the resonance,
€+ — €, that InI" does go as a power law in this quantity
when only residual noise is applied. A fit of such datato
the form in Eqg. (6) yields ¢ = 1.0 £ 0.3, and then b =
0.8 = 0.4, both consistent with the predictions. When
we add noise power to increase the effective tempera
ture Ty, Fig. 4b shows that the flip rate increases expo-
nentially as predicted in Eq. (6). Unfortunately, the signal
averaging used to see amplitude collapses makes it diffi-
cult to observe them when added noise increases their rate.

Finally, the measured flip rates for the center-of-mass
motion of an N-electron oscillator with N = 2 through
N = 4 depend on drive and noise in a similar way to
that discussed for N = 1. The axia frequency w, is
unchanged insofar as it depends on the ratio of the charge
Ng and mass Nm, but the center-of-mass damping rate
increases as Ny,. The measured flip rates show that £/D
varies in proportion to N, but not as Ny,. For fixed
detuning e, drive strength (i.e, €4), and y., Fig. 5 shows
the flip rate decreasing exponentially with increasing N.
When y, and N vary together, with Ny, remaining
constant, £/D changes with N in the same linear way.
Interestingly, when we dlightly extend the one-electron
model [10] to describe an N-electron oscillator, we obtain
precisely this dependence. The neglected internal motions
are apparently rendered unimportant due to sufficient
cooling by internal collisional couplings and the resonant
TE5 mode.

In summary, the parametrically driven one-electron os-
cillator isanearly ideal realization of adouble well system
far from equilibrium. Measurements of the transitions and
the crucia exponentsillustrate that quantitative studies can
be done on awell-controlled and well-characterized proto-
type system with a promising future. The comparison of
our measurements with a theoretical analysisis a bit puz-
zling. On one hand, the theoretical model seemsto be con-
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tradicted by experimental observations that an amplitude
collapse nearly always results in a phase jump from one
side of the double well to the other. On the other hand, the
measured influence of damping and applied noise, along
with measured crucial exponents, agrees with the theoreti-
cal predictions. Based upon what has been learned, the
measurements could be significantly improved by reduc-
ing the fluctuations in the applied trapping potential. With
better signal to noise, the nature of the collapse and revival
of the excitation could be investigated in more detail. In
future investigations, less cavity cooling of the cyclotron
motion could easily be arranged, freeing trapped electrons
to develop interesting and observable collective motions
quite different from those described here. Similar appara-
tus and technique should thus make it possibleto follow the
onset of collective motions in a single component plasma
as the number of electrons is increased from 1 to 10°.
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