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Coherent Dynamics of Vortex Formation in Trapped Bose-Einstein Condensates
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Simulations of a rotationally stirred condensate show that a regime of simple behavior occurs in
which a single vortex cycles in and out of the condensate. We present a simple quantitative model of
this behavior, which accurately describes the full vortex dynamics, including a critical angular speed of
stirring for vortex formation. A method for experimentally preparing a condensate in a central vortex
state is suggested.

PACS numbers: 03.75.Fi, 47.32.Cc
The production of vortices has been a central issue in
the study of superfluids. It has been demonstrated, for ex-
ample, that attempts to produce bulk rotation in a cylinder
of He II will lead to vortex production, a state which calcu-
lations show to be energetically favored. The currently re-
alized [1,2] Bose-Einstein condensates (BEC) offer a new
medium for studying vortices, and a number of theoreti-
cal studies have considered the properties of static vor-
tices [3,4], their stability [5–8], excitation spectra [9,10],
and phase sensitive detection techniques [11]. A variety
of methods have been considered by which vortices could
be formed in a BEC. Fetter [6] suggested that a rotating
nonaxially symmetric trap could imitate the He II rotating
cylinder, and obtained an approximate critical rotational
speed for vortex production by a heuristic argument. Jack-
son et al. [12] showed that vortices may be generated by
movement of a localized potential through a condensate,
while Marzlin and Zhang [13] calculated vortex produc-
tion using four laser beams in a ring configuration. Other
numerical simulations, such as collisions of condensates
[14,15], have shown in fact that vortex production appears
to be a common consequence of mechanically disturbing a
condensate.

In this paper, we consider a trapped BEC stirred rotation-
ally by an external potential, and find and analyze a regime
where only a single vortex forms. We present a simple
quantitative model of this behavior, which accurately de-
scribes the full vortex dynamics in terms of a coherent
process. The model gives the critical speed of rotation for
vortex formation and explains a number of other features
that are seen, including the stability of a central vortex (at
T � 0). Our investigation is based on the Gross-Pitaevskii
(GP) equation for the condensate wave function c�r, t�,
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which is known to accurately describe condensates close to
T � 0. In Eq. (1) we have used scaling and notation as in
Ruprecht et al. [16]; V �r, t� is the external potential, and
C is proportional to the number of atoms in the condensate
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and the scattering length. We consider the GP equation in
two dimensions only, and solve it numerically. We simu-
late the effect of stirring by adding to the stationary trap
potential a narrow, moving Gaussian potential, represent-
ing, for example, a far-blue-detuned laser [17]. V �r, t� is
given by r2�4 1 W�r, t�, and the stirring potential
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is centered at rs�t�. The initial condensate state for our
simulations is the lowest energy eigenstate of the time-
independent GP equation [9] in which V includes the
stationary stirrer. The stirrer moves anticlockwise on a
circular path, accelerating constantly until t � p , when
it reaches its final angular speed vf . Figure 1, which
shows the state of a condensate after it has been stirred
for some time �t , 5p� then left to freely evolve �t $

5p�, illustrates the complexity of behavior that can occur.
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FIG. 1. Probability density at t � 12p of a condensate
stirred, as described in the text, with the stirrer gradually with-
drawn between t � 4p and 5p. Contours are logarithmically
spaced. Vortices are detected numerically by searching for
their 2p phase signature, and are marked near dense regions
of the condensate by a 1 or 2 sign according to their sense.
C � 88.13, vf � 1, rs � 3, W0 � 10, and ws � 1.
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Vortices of positive and negative circulation have formed
and, as time progresses, move relative to each other, and
annihilate when a positive and negative pair collide [18].

Amidst the complexity of possible behaviors, an impor-
tant and simply characterized behavior emerges, namely
the formation and dynamics of a single vortex. An ex-
ample which illustrates the main features is given in
Fig. 2, where sequential subfigures show the evolution of
the condensate as the stirrer revolves. A single vortex en-
ters at the edge of the visible region of the condensate,
then cycles to the center of the condensate, and back to
the edge. This cycle repeats regularly, as can be seen in
Fig. 3 where the solid line shows the angular momentum
�L� plotted as a function of time for this case. At lower
stirring speeds, similar vortex cycling occurs, but with pro-
gressively smaller amplitudes as vf decreases, so that the
vortex oscillates near the condensate edge. We have found
that the condensate gains angular momentum even for very
small values of vf . The critical angular speed, which
causes a single vortex to cycle right to the center of the
condensate, we denote as vc. In Table I we present results
from our simulations that show that vc decreases as C in-
creases, in agreement with the heuristic result of Fetter [6].

The single-vortex behavior can be understood quantita-
tively in terms of a nonlinear Rabi cycling model. The
essential idea is that the stirring potential causes the con-
densate to cycle between the ground state and the first vor-
tex state, analogous to the Rabi cycling of an atom in a
light field. We decompose the condensate on the basis

FIG. 2. Sequence of states for a condensate stirred from rest
as described in the text. Probability density is shown in the
left-hand column, and the phase of c in the right-hand column,
for (a) t � 8.80, (b) t � 18.35, and (c) t � 28.15. The circle
denotes the stirrer. Parameters are the same as in Fig. 1, except
vf � 0.5 and rs � 1.5.
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of a ground-state-like part (axially symmetric) and a vor-
tex part (axially symmetric with an anticlockwise phase
circulation). In the linear (i.e., C � 0) limit the conden-
sate would be represented as a superposition of the ground
state and the first vortex state of the trap. In the nonlin-
ear system, it is more accurate to decompose the system
into collisionally coupled states, in which the radial form
of each of the basis states is modified by its collisional in-
teraction with the other. Accordingly we assume that the
condensate mean-field wave function can be represented
approximately as

c�r, t� � as�t�fs�r, ny� 1 ay�t�fy�r , ny�eiu , (3)

where r and u are the cylindrical polar components of
r, and ny � jayj

2. We obtain the lowest energy coupled
eigenstates fs�r, ny� and fy�r , ny�eiu , together with their
eigenvalues ms�ny� and my�ny�, by solving for a particu-
lar value of ny the coupled time-independent radial GP
equations,
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Here s and l are either s or y, ls � 0 and ly � 1 are
the angular momenta of fs and fyeiu , respectively, ny

is the fraction of the condensate in the vortex component,
and ns � 1 2 ny is the fraction in the symmetric compo-
nent. The fs are real non-negative functions normalized
as

R
f2

s dr � 1, and fs and fyeiu are of course orthogo-
nal. The superposition in Eq. (3) produces a condensate
with an angular momentum expectation value �L� � ny ,
and a vortex whose distance from the center of the trap de-
creases as ny ! 1. In the absence of a stirrer, the vortex
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FIG. 3. Angular momentum expectation values versus time
for vf � 0.5 (solid line), vf � 0.4 (lower dashed line), and
vf � 0.6 (upper dashed line). Other parameters are the same
as in Fig. 2.
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TABLE I. Critical angular frequency vc for the two-
dimensional condensate. The final column gives bounds for
vc found from our simulations of the full GP equation.

C Eg Ey vc Simulation vc

0 1 2 1 · · ·
30 1.811 2.520 0.709 0.6–0.8

88.13 2.744 3.284 0.540 0.5–0.6
500 6.079 6.394 0.315 · · ·
5000 18.860 19.000 0.140 · · ·

precesses about the center of the condensate at a frequency
my 2 ms. Substituting Eq. (3) into Eq. (1), and project-
ing alternately onto the states fs and fyeiu , we obtain a
pair of coupled equations for �as and �ay . Noting that a
constantly rotating stirring potential W�r, t� can be writ-
ten e2ivf tLW 0�r�e1ivf tL, and writing ãs � aseias , ãy �
ayei�as1vf t�, where as�t� �

Rt
0 ms�t0� dt0, we collect the

oscillating exponential time dependences and transform to
a frame which rotates with the stirring potential to obtain
the following equations:

dãs

dt
� 2ids�ny�ãs 2
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Here D�ny� � my�ny� 2 ms�ny� 2 vf and

ds�ny� �
Z

fs�ny�W 0�r�fs�ny� dr , (6a)

V�ny� � 2
Z

fs�ny�W 0�r�fy�ny�eiu dr . (6b)

Equations (5) formally resemble the classic Rabi equa-
tions, and hence we identify the ds as frequency shifts
and V as the bare Rabi frequency, but note that here these
quantities are variable and depend on the value of ny . De-
spite this nonlinear dependence, the concept of Rabi cy-
cling provides a simple framework in which to understand
the formation and dynamics of a single vortex: the stir-
ring potential couples and causes cycling between the ini-
tial ground state and the first excited vortex state. The
energy E0 in the frame rotating with the stirrer (obtained
from the expectation value of H 0 � H 2 vfL, where H
is the lab frame Hamiltonian and L is the dimensionless
angular momentum operator) is conserved, and thus in any
solution to Eqs. (5), ãs and ãy must follow a trajectory that
conserves E0. Complete cycling of the vortex to the cen-
ter of the condensate occurs when ny reaches the value of
1, but this requires the energies in the rotating frame of
the ground state fs�r, ny � 0� and the first excited vortex
state fy�r , ny � 1�eiu to be equal. Thus the critical an-
gular speed vc is given by the relation

Ey 2 vc � Eg , (7)
where Eg and Ey are the lab frame energies of the ground
state and first excited vortex state, respectively. A finite
stirrer shifts these energies by ds�ny � 0� and dy�ny �
1�, respectively, adjusting vc by their difference.

In Table I we list the critical angular speeds predicted
by Eq. (7) for a range of C values, along with the values
of vc found from our numerical simulations of the full
GP equation for C � 30 and C � 88.13 cases. The
agreement between the predictions from the two-state
model and the full numerical simulation is excellent.

It is difficult to obtain accurate simulations at large
values of C for numerical reasons. The C � 0 case is
easily tractable, and although no visible vortex cycling
occurs below vf � 0.25, a multiple vortex regime is
entered at vf � 0.8 , vc; the reason being, as Marzlin
and Zhang [13] have noted, that the trap levels are equally
spaced for the linear case, so that mixing to higher vortex
states readily occurs, and our two-state model is no longer
valid. The success of the two-state model is dependent
on the fact that, for C fi 0, the spacing of the levels is
nonuniform.

The Rabi model also allows us to explain other features
of the behavior, such as the period of cycling, the response
to smaller stirring speeds, and the effect of different values
of stirring radius rs. In Fig. 3 the condensate response to
stirring just below the critical speed is shown, and reveals
an increase in oscillation frequency and decreased trans-
fer to the pure vortex state, compared to the critical case.
In a simple Rabi model, where the detuning D and Rabi
frequency V are constant, the cycling frequency is V0 �p

V2 1 D2, and the maximum value of ny is �V�V0�2.
By identifying the effective detuning for the two-state sys-
tem to be D 1 dy 2 dg, these expressions give a quali-
tative description of the subcritical stirring in Fig. 3. A
more quantitative treatment requires the nonlinear charac-
ter of Eqs. (5) to be taken into account, which is achieved
by solving the coupled pair in Eq. (4) to find the eigen-
vectors and eigenvalues at each value of ny and then us-
ing these to solve Eqs. (5). We note that in Eq. (4) the
term 2nlf

2
l gives rise to an energy barrier between the

ny � 0 and ny � 1 states of the system. The constraint
on the system imposed by the ansatz of Eq. (3) increases
this energy barrier slightly compared to the true (uncon-
strained) case, and the accuracy of our procedure can be
improved by decreasing this factor of 2. For example, at
C � 88.13, if we decrease the factor of 2 ! 1.58, our two-
state model produces behavior which closely matches the
results from the full GP equation, as we show in Fig. 4.
The energy barrier is deformed by the presence of the stir-
rer, allowing the system to cycle between the vortex and
ground state. If the stirrer is far from the center of the
condensate, or is weak, then V may be too small to distort
the energy barrier sufficiently, and only incomplete cycling
occurs even when vf � vc. This feature of the nonlin-
ear system, which agrees with our rs � 3 simulations of
the full GP equation, is in contrast to the ordinary Rabi
897
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FIG. 4. Angular momentum versus time for the full GP
equation simulation (solid line) and the two-state model (dashed
line). The two-state model starts at t � 3 with ãs �

p
0.965

and ãy � 2
p

0.035. Parameters are the same as in Fig. 2.

case, where complete cycling occurs on resonance for any
nonzero coupling field.

The validity of the two-state model breaks down when
vf exceeds vc, because then higher energy vortex eigen-
states are energetically permitted and mixed into the state
of the system, as seen, for example, in Fig. 1 and the upper
dashed curve of Fig. 2.

The Rabi model provides some insight into the issue of
the stability of a central vortex state [5,10]. We have tested
this stability in the T � 0 limit by simulation of the GP
equation, taking the first excited l � 1 vortex state and in-
serting and withdrawing a narrow stirrer at a fixed location
in the laboratory frame. We find that, although the conden-
sate then wobbles vigorously, the vortex undergoes only a
very stable small-amplitude oscillation about the trap cen-
ter [18]. We can interpret this as Rabi cycling of very large
effective detuning (i.e., vf � 0), and consequently very
small transfer probability out of the initial vortex state.

The regular cyclic single-vortex behavior we have found
also suggests an experimental technique for preparing a
condenstate in a central vortex state. By stirring a conden-
sate for a half-cycle, a vortex will be drawn into a nearly
central position.

In conclusion, we have given a simple, quantitative
analysis of the single-vortex regime of a stirred conden-
sate. Our two-state model captures the essential coherent
dynamics, and accurately predicts the major features of
this regime, but also provides a qualitative understanding
in terms of the concepts of the well-known Rabi model.
Our result for the critical angular frequency can be qualita-
tively related to that for a rotating cylinder of He II. How-
ever, in our case the condensate is inhomogeneous, and the
trapping potential plays a central role, giving rise to well-
separated condensate eigenstates, of which only the lowest
two become significantly involved. It is worth remarking
898
that the speed of sound in the vicinity of the perturber has
no relevance to the generation of vortices, in the scenarios
we consider here. The model is also easily generalizable
to an arbitrarily shaped stirring potential, including a rotat-
ing anisotropic potential. Our numerical calculations have
been carried out in two spatial dimensions, but can be ex-
pected to apply to “pancake” condensates, where the dy-
namics in the axial direction are frozen out by very tight
axial confinement. Qualitative features of our results may
have even greater generality, since the two-state model
has no direct dependence on dimensionality, and will ap-
ply in three dimensions if the system symmetry confines
the stirrer to couple the ground state primarily to a single-
vortex state.
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