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Lift Force and Dynamical Unbinding of Adhering Vesicles under Shear Flow
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We show that a vesicle under shear flow experiences a lift force of hydrodynamical origin. This force
is of purely viscous nature, and it originates from upstream-downstream asymmetry. At a critical shear
rate g � 100 500 Hz the vesicle, initially making adhesion with a substrate, undergoes an unbinding
transition in two nontrivial steps. In the first step the lift force behaves as g2, whereas in the second
step as g. We present numerical and analytical results on this phenomenon. We discuss several
implications.

PACS numbers: 87.16.–b, 47.55.Dz, 87.19.– j
A long time ago Lord Rayleigh reported that a spinning
ball experiences a lateral force and has credited this phe-
nomenon to Magnus. Poiseuille [1] in 1836 recognized
that blood corpuscles in the capillaries tend to keep away
from the walls due to a lift force. These two forces are
of different natures, the latter stems from viscous effects,
while the former originates from inertia. In the realm of
cell biology, inertia is small (the Reynolds number is at
most equal to 1023), and thus viscous effects prevail. A
lift force of viscous type cannot act on a spherical object
owing to the reversibility of the hydrodynamics equations
in this limit (Stokes equations). However, vesicles are de-
formed during motion, as, for example, under shear flow.
Their form has upstream-downstream asymmetry which
destroys reversibility upon time reversal. This results in
a lift force of purely viscous nature. It is several orders
of magnitude larger than the usual Magnus force [2]. De-
termining this force, and analyzing its far reaching conse-
quences, is the first goal of this Letter.

The analysis is performed on phospholipidic vesicles.
The vesicle form is not given a priori; it adapts its shape
freely to the environment (a free boundary problem).
The problem is nonlinear and nonlocal (see below). We
find that the vesicle, initially making adhesion with a
wall, detaches completely from the wall when the shear
rate g exceeds a critical value. This scenario occurs in
two distinct nontrivial steps and it results from a subtle
interplay between lift force, bending, and adhesion forces.
For typical parameter values of phospholipidic vesicles,
the critical shear rate falls in the range of 100 s21. Using
a lubrication approximation we extract analytically the
functional dependence of the lift force. We provide also
an expression for the dynamical contact curvature when
the vesicle still adheres to the substrate. The analytical
work is supported by the full numerical analysis.

The vesicle initially makes adhesion with a homoge-
neous substratum and is submitted to a constant linear
shear flow. In the limit of a small Reynolds number the
velocity field obeys the Stokes equations, which are linear.
The superposition theorem implies that at any point in the
0031-9007�99�83(4)�880(4)$15.00
fluid the velocity is the sum of two terms: (i) the veloc-
ity of the unperturbed shear flow v � gyx̂ (in the coordi-
nates system shown in Fig. 1), with g the constant velocity
derivative along the y direction; (ii) the velocity response
to the forces applied on the fluid by the vesicle and the
substrate. This term is written by using a Green’s func-
tion formalism, with T the free space Green’s tensor [3].
Considering a 2D situation, which is sufficient in order to
capture all of the features, we obtain
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where z is a Lagrange multiplier enforcing a constant
length (whereas the enclosed volume conservation is en-
sured by fluid incompressibility), n and t are the normal
and tangent unit vectors, k � 25kT is the bending rigidity,
and c is the curvature. The adhesion potential has a mini-
mum denoted by w0 � 102kT mm22 at a distance from
the substrate d0 � 50 nm.

A description of the numerical strategy is given in [3,4].
After the transient has decayed, the vesicle moves in a
shape-preserving manner with constant velocity. On in-
creasing g, the vesicle undergoes series of transforma-
tions before it reaches the unbinding threshold, as shown
in Fig. 1. Three typical behaviors are revealed on increas-
ing shear rate.
© 1999 The American Physical Society
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FIG. 1. Stationary vesicle shape evolution under an increasing
shear rate. (The numbers refer to typical shear rate values
measured in units of 100 s21.)

Small shear rate.—The vesicle still strongly adheres to
the substrate (first three states in Fig. 1). The front part of
the vesicle moves upward progressively, whereas the rear
develops a stronger contact curvature with the substrate.

Intermediate shear rate.—For a critical value of the
shear rate g1 the surface of adhesion (length in 2D)
undergoes a sudden (within few percent change of g)
collapse towards zero; the vesicle remains only pinned to
the substratum. An important feature is that the vesicle
morphology then remains practically unchanged over a
wide range of the shear rate (typically a factor of 2).
The only noticeable evolution is the increase of the tank-
treading and translational velocities. The tilt and shape
of this pinned vesicle are close to those of a vesicle in an
unbounded shear flow which only depends on the reduced
volume of the vesicle, and not on the shear rate [5].

Large shear rate.—The vesicle completely unbinds at
a second critical shear rate g2 � 100 s21 (for typical
parameters used before, and for a vesicle radius of order
10 mm) and is pushed away from the wall.

The decomposition of the unbinding transition into two
separate processes is fully justified by the lift force evolu-
tion as a function of the shear rate (Fig. 2). The numerical
power law exhibits clearly a slope discontinuity. The first
exponent 1.9 is valid on a whole decade and remains con-
stant 65% for different rigidity or adhesion values. The
second exponent is obviously not so precise because of
the limited range of shear rate values between the first
and second transitions. It can practically be assigned a
value of about 0.8. Under a small shear rate, the vesicle
behaves as a deformable object and a dimensional analy-
sis predicts a quadratic law with g [6]. As we have seen,
for larger shear rates the shape does not evolve noticeably,
so the law must be linear.

The asymmetry of the pressure field produces a torque
which is responsible for the first transition (see Fig. 3).
This happens as soon as the attractive potential cannot
counterbalance the overpressure locally in the front part
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FIG. 2. Hydrodynamical lift force as a function of the shear
rate in logarithmic scales.

(at the rear there is an underpressure entailing an enhance-
ment of the binding to substrate). The whole vesicle tilts
to assume the most favorable shape. The second transi-
tion takes place when the total lift force overcomes the
adhesive force. These features are discussed below.

As stated before, the viscous lift force vanishes for a
symmetrical object. This fact is traced back to the re-
versibility of the Stokes equations. Thus, the first con-
cern will focus on the estimate of the shape asymmetry.
Both adhesion and hydrodynamical forces are only impor-
tant in the vicinity of the substrate and, especially, close to
the vesicle contact points. In order to quantify the shape
asymmetry in this region, we compare the curvature at the
front and rear contact points. The determination of these
curvatures is very interesting by itself. It provides us with
a central result, that is, dynamical contact curvature.

The flow produces an overpressure in front of the
vesicle and an underpressure in the rear (see Fig. 3).
Using the Landau-Levich lubrication approximations in
the region of interest between the substrate and the

FIG. 3. Hydrodynamics vertical force distribution under the
vesicle. The forces exerted on the top are 1 order of magnitude
smaller.
881



VOLUME 83, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 26 JULY 1999
membrane, whose width is denoted as d�x� (Fig. 4) the
Stokes equations takes the form
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The vesicle has a stationary motion with translational
and tank-treading velocities denoted by V x̂ and 2RVt,
respectively. R is a typical vesicle radius, and 2V is
the rotation rate. In the vesicle frame moving at constant
velocity V x̂, the boundary conditions are v�x, 0� � 2V x̂
and v�x, d� � 2RVt. The vector t � x̂ 1 d0ŷ is the
unit tangent, and d0 designates derivative of d. Using
Eq. (2), we express yx as a function of the pressure,
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We choose an exponential profile [8] for both sides
of the vesicle in the vicinity of the two contact points
(Fig. 4), that is, d�x� � d0ex�x6

0 ; 6 refers to the front
and rear sides, and the origin for x corresponds to the
contact point �d � d0�. Using the boundary conditions
for yy , we obtain a differential equation for the pressure.
The integration is performed around each contact point
with vanishing boundary conditions for the pressure
at d � d0 and d ! `. This is not fully true when
compared to numerical values (Fig. 3), but provides
a good approximation, and this is sufficient for our
purposes. We obtain

p6�x� �
6hVmx6

0

d2

µ
1 2

d0

d

∂
, (4)

where Vm � �V 1 RV��2 is the average velocity in the
lubrication region measured in the translational vesicle
frame. From the pressure field, we find that the extremal
local pressure occurs for dm �

3
2 d0:
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. (5)

Note that x0 is positive at the front and negative at the
rear, meaning an overpressure ahead and an underpressure
behind. The power laws are in good agreement with nu-

FIG. 4. Exponential fit near the contact point.
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merical results. The hydrodynamical force is proportional
to the geometrical factor x6

0 . Realizing that dynamical
curvature cd � d0��x6

0 �2, we see that the total lift force
depends on the curvature difference between the two con-
tact points.

The interplay between the above lift force and adhesion
and bending forces provides us with an equation for
the curvature cd . The distance d0 plays the role of a
small parameter (as compared to vesicle size). The two
leading membrane forces in terms of d0 are [Eq. (1)]
k≠2c�≠s2 � kc0�l2

0 , and the adhesion force which varies
rapidly close to the substrate is ≠w

≠y � w0�d0. Here, l0 is
the characteristic distance of the curvature variation, and
is practically independent of g far from the first unbinding
transition. For a contact adhesion potential the curvature
jumps from zero on the substrate to its equilibrium value
c0 �

p
2w0�k [7]. This obviously implies that l0 ! 0

with d0. In order for the curvature force to compensate
the adhesive force, we must have, at equilibrium,
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The hydrodynamical force also “diverges” for small d0
[for a given Vm, see Eq. (5)]. It competes with the
two dominant membrane forces presented above, and this
is precisely how the dynamical curvature is obtained.
Combining the three forces (hydrodynamics, bending, and
adhesion) we arrive at
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The minus and plus signs refer to the front and rear,
respectively. We have used the fact that Vm � V �
g
p

Rd0. This is the asymptotic result for a cylinder
under shear flow moving along a wall for small d0 [9].
Equation (7) is a third order equation for cd . To leading
order, cd�c0 � O�1�, so that dynamical deviations are
linear in the shear rate. The dynamical curvature is
decreased at the front and increased at the rear. This
leads to an upward normal force directed toward the fluid,
a lift force, as expected. At appreciable velocities, the
third order equation is solved and compared to the full
numerical solution for the forward curvature (upon scales
adjustment). We find good agreement (Fig. 5). At the
back part, the agreement is less satisfactory since, due
to a curvature increase, nonlinear effects in the bending
force [e.g., c3 in Eq. (1)] act against the curvature increase
and significantly limit the strength of variation. In other
words, most of the effect is pronounced at the front part,
whereas at the rear the curvature is within reasonable
accuracy close to c0.

Let us now determine the lift force together with the
critical shear rate for the first transition. Transition occurs
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FIG. 5. Curvature evolution with the shear rate.

when the hydrodynamical force overcomes the adhesive
force around the front part of the vesicle. The transition is
characterized by a slope divergence in the curve cd�Vm�.
This entails that the critical shear rate be given by (see
full numerics in Fig. 6)
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Under the assumption that the hydrodynamical force
under the vesicle is l0pmax, we determine the total
lift force acting on the vesicle as Fl � l0�pmax�cd� 2
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For larger shear rates, the shape asymmetry depends
mainly on the vesicle tilt and the reduced volume. The
shape is constant, independent of the rigidity and of the
adhesion, so we do not need to estimate it in order
to determine the total lift force evolution. We denote
by c̄ the mean curvature and by Dc the curvature
difference between both sides of the (unique) contact
point. Realizing that the force is mainly exerted on a
length l �

p
d0�c̄, we obtain
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The unbinding transition occurs when this force ex-
ceeds the adhesion force acting on the pinned portion.
The latter is given by w0�

p
d0c̄. This yields
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where g2 is directly related to the vesicle asymmetry (the
factor Dc). It depends linearly on the adhesion since at
the unbinding threshold, the lift force does not vary as g2

but as g instead. This result was not obvious a priori.
It should provide an important basis for experimental
investigations on cell adhesion.

Finally, let us make some general remarks. It is
clear that the predictions made here are not devoid of
experimental testability, and direct comparison with the
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FIG. 6. Critical shear rate value for both transitions as a
function of adhesion potential.

present work can be made for vesicles making a weak
adhesion with the substrate. For biological cells, or for
vesicles decorated with specific adhesion centers, there
exists a critical force above which a cell rolls under shear
[6]. This effect can, in principle, be incorporated in our
study by introducing adhesion pinning centers, or other
effects that lead to a critical force. In the biological world,
perhaps the most prominent example concerns leukocyte
movement. The lift force tends to keep a leukocyte away
from the venule wall. Venules of infected and inflamed
tissue dilate and become leaky. This sufficiently perturbs
the flow, thus allowing a leukocyte to reach the venule
walls, where it can be caught by adhesion molecules.
Similarly, due to a venule injury, elastic properties may
also be significantly altered. The same should happen
as one gets older. It is tempting to speculate that this
should weaken the lift force, inducing thereby a deposit
of some undesirable blood corpuscles on the venule wall.
We hope that the present study will, in a concerted fashion
with experimental analyses, shed light on the relevance of
the results presented here to a wider variety of systems.
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