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Hydrodynamic Lift on Bound Vesicles
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Bound vesicles subject to lateral forces such as arising from shear flow are investigated theoretically
by combining a lubrication analysis of the bound part with a scaling approach to the global motion.
A minor inclination of the bound part leads to significant lift due to the additive effects of lateral and
tank-treading motions. With increasing shear rate, the vesicle unbinds from the substrate at a critical
value. Estimates are in agreement with recent experimental data.

PACS numbers: 87.19.– j, 47.15.Gf, 82.70.–y, 87.45.–k
The equilibrium aspects of the interactions between
membranes or vesicles and substrates have been explored
intensely over the last decade [1]. Quantitative experi-
mental data for both the mean shape and the fluctuations
of the bound part of a vesicle have been obtained by us-
ing phase contrast microscopy and reflection interference
contrast microscopy (RICM) [2]. A qualitative new step
concerns the study of bound membranes under controlled
nonequilibriumconditions such as the behavior of bound
vesicles under shear flow. Apart from its fundamental
significance, this system can serve as a model for the bio-
logically ubiquitous situation of adhesion of membranes
under flow. A prominent example occurs for leucocyte or
platelet adhesion in capillary flow. Clearly, for biological
systems, the nontrivial kinetics of specificadhesion mole-
cule pairs under a ramped force contributes essentially to
the dynamic unbinding of these cells (see, e.g., [3–5], and
references therein). Still, a thorough understanding of the
model case of a bound vesicle with its interplay between
unspecificinteractions and flow will be a prerequisite for
gaining a comprehensive picture of these important dy-
namic interactions.

A significant experimental step in this direction has
been achieved recently by combining RICM with a
flow chamber [6]. With this setup one can study the
configurations of bound vesicles under shear flow. It was
observed that these vesicles unbind from the substrate at
a critical shear rate. However, the effective lift force was
found to be about 2 orders of magnitude larger than what
was predicted in previous theoretical work [4].

The purpose of this Letter is to analyze theoretically
the dynamically induced interaction between a substrate
and a bound vesicle under a lateral force such as arising
from shear flow. This problem is challenging since it
involves two vastly different length scales. Typically,
the vesicle size is of the order of 10 mm, whereas the
distance between substrate and vesicle is of order 10 nm.
A brute force approach trying to solve numerically the
equations of motion of such a configuration as it has been
done for free vesicles in shear flow [7] is bound to require
a very fine discretization and, consequently, to face high
computational costs. A first step in this direction has been
0031-9007�99�83(4)�876(4)$15.00
achieved recently for the computationally less expensive
two-dimensional case [8,9].

For the experimentally relevant three-dimensional case,
a two step approach will be followed here. First, the
bound part of the vesicle will be treated quantitatively
within the lubrication approximation which holds if the
lateral extension of the bound part is significantly larger
than the distance from the substrate. As a result, we
will find that whenever this bound part is tilted a
significant hydrodynamic lift arises even for small tilt
due to the additive effects of translation and relative
membrane motion, i.e., tank treading. In a second step,
we couple this lubrication analysis into a scaling approach
of the overall vesicle motion. As a result, we predict a
critical lateral force beyond which vesicles will detach
from the bound state and, thus, undergo a dynamically
induced unbinding transition. This transition must be
distinguished from an equilibrium unbinding transition
due either to fluctuations [10,11] or a competition between
adhesion energy and curvature energy [12].

Geometry.—In equilibrium, a vesicle bound to a sub-
strate by a potential V �h� acquires a spherical caplike
shape if the depth W of the potential is sufficiently deep;
see Fig. 1. The shape can then be characterized by two
parameters, the radius R of the spherical cap and the ra-
dius Ra # R of the adhesion disc. The distance h0 of
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FIG. 1. A bound vesicle under a lateral force Fx (left) in a
potential well V �h� with minimum at h0 and depth W (right).
The radius of the adhesion disc is Ra, its tilt angle is a. The
vesicle translates at velocity y and tank treads at velocity ym.
This motion generates a lift Fl .
© 1999 The American Physical Society
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the adhesion disc from the substrate is determined by the
location of the minimum of the adhesion potential. In
equilibrium, the adhesion disc is parallel to the substrate
but we will here allow a small tilt angle a.

We now apply a force Fx parallel to the substrate.
The physical origin of this force can either be a linear
shear field with shear rate �g or a gradient in adhesion
energy =W [8,9]. The force then scales as Fx � �ghR2,
or Fx � =WR2

a, respectively. As a result the vesicle
moves with a velocity y into the same direction. Since
the membrane is fluid, we have to allow for tank-treading
motion which we assume for the spherical part to be a
uniform rotation in the x, z plane at an angular speed
ȳm�R. This membrane flow on the spherical part enters
(or leaves) the rim of the adhesion disc with a y dependent
velocity

ym� y� � ȳm�1 2 y2�R2�1�2, (1)

where jyj # Ra. The velocities y and ȳm will later be
determined from force balances but for the moment they
are assumed to be given. We show first that such a motion
generates a significant hydrodynamic lift on the vesicle.

Lubrication theory.—For future reference, the lubri-
cation approximation will be set up not just for a tilted
adhesion disc but for a general membrane configuration
parametrized by h�r� in a Monge representation above
a substrate at z � 0 with r � �x, y�. The velocity field
is written as v�r, z� � u�r, z� 1 w�r, z�ez where u�r, z�
is the component parallel to the substrate. At the mem-
brane, we specify the velocity as v�r, h�r�� � uh�r� 1

wh�r�ez . At the substrate, no-slip boundary conditions im-
ply v�r, 0� � 0.

The Stokes equations for the incompressible fluid
between substrate and membrane read

h�≠2
z 1 =2�u � =p , (2)

and

h�≠2
z 1 =2�w � ≠zp . (3)

Here = is the gradient operator in the plane, i.e., = �
�≠x , ≠y� in Cartesian coordinates. From the continu-
ity equation ≠zw 1 =u � 0, it follows that w�juj �
O�h0�Ra� for small h0�Ra. This scaling implies via (2)
and (3) that the pressure is a function of r but indepen-
dent of z to leading order in h0�Ra. Likewise the =2 term
can be ignored in (2). The latter equation can hence be
integrated as u�r, z� � =p�r�z�z 2 h��2h 1 uh�r�z�h,
which satisfies the boundary conditions at z � 0 and
z � h. Applying the = operator to this equation, insert-
ing the resulting expression into the equation of continu-
ity, and integrating the latter over z from 0 to h yields a
Reynolds-type equation

=2p 1 3=p=h�h � 12hwh�h3 1 6h=�uh�h��h . (4)

This equation for the pressure holds for any membrane
configuration in the lubrication approximation. We now
specialize to the circular adhesion disc of radius Ra
tilted at a small angle a, i.e., h�r� � h0 1 ax; see
Fig. 1. No slip boundary conditions between membrane
and fluid imply for the translational and tank-treading
motion introduced above the boundary values wh�r� �
2aym� y� and uh�r� � �y 2 ym� y��ex for small a.
With =h � aex , Eq. (4) becomes

=2p�r� � 26ah�ym� y� 1 y��h3
0 (5)

to lowest order in a. First, assume that there was no tank-
treading motion, ȳm � 0, and, hence, no r dependence of
the inhomogeneity in this Poisson equation. The solution
then is

p�r� � 3ahy�R2
a 2 r2��2h3

0 1 p�Ra� �r�Ra� cosf ,
(6)

where p�Ra� cosf is the ambient pressure along the
rim of the adhesion disc parametrized by the azimuthal
angle f. Integrating the excess pressure over the entire
adhesion disc yields the total lift force on the membrane
disc as

Fl � 3pahyR4
a�4h3

0 . (7)

For ȳm fi 0, the solution of the Poisson equation (5) is
slightly more involved because of the y dependence of the
right-hand side (rhs). We are interested only in the total
lift, which involves averaging over the whole adhesion
disc. Given the form (1), it is then clear that (7) still holds
with y replaced by ȳm up to a dimensionless function
f�Ra�R� of order unity. The important point is that both
translational motion and tank-treading motion contribute
similarly to the hydrodynamic lift (7). This lift increases
strongly with decreasing distance h0 of the membrane
from the substrate. Note that the reversibility of the
Stokes equations implies that there is no hydrodynamic
lift for a nontilted configuration with a � 0.

Scaling analysis of global motion.—We now have
to link this lubrication analysis of the adhesion disc to
the overall vesicle dynamics. We apply the force Fx

parallel to the substrate and assume first the rotational
degree of freedom being locked at a � 0. Then, there
are two conditions which fix the two velocity parameters
y and ȳm uniquely. Ignoring numerical prefactors these
conditions read: (i) Force balance in the x direction:

Fx � hDyR2
a�h0 1 hyR , (8)

where Dy � y 2 ȳm is the velocity of the bound part of
the vesicle relative to the substrate. The first term on the
rhs is the lateral force exerted by the lubrication layer, the
second term is the hydrodynamic drag of the exterior fluid
outside of the lubrication layer. (ii) Dissipation balance:

Fxy � h�Dy�2R2
a�h0 1 hy2R 1 hȳ2

mR . (9)

The left-hand side represents the power applied by the
external force onthe system. The first term on the rhs is
the dissipation in the lubrication layer. The second one is
dissipation in the exterior fluid outside of the lubrication
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layer. The third term is the dissipation within the vesicle
due to tank treading. We now divide the first equation
by hR, the second one by hyR, and introduce with
yS � Fx�6phR the Stokes velocity of a spherical vesicle
in infinite space.

The two equations (8) and (9) then read yS �
bDy 1 y and yS � b�Dy�2�y 1 y 1 ȳ2

m�y, where
b � R2

a�h0R is a dimensionless variable measuring the
relevance of the substrate. For the scaling analysis, we
have to distinguish three cases.

(i) For b ø 1, the vesicle is too far away from the
substrate to be affected significantly in its motion. We
will not consider this case further.

(ii) For b � 1, we have Dy � y � ȳm � yS . In this
case, both translational and tank-treading velocity are of
the order of the Stokes velocity.

(iii) For b ¿ 1, we find Dy � y�b and, consequently,
ȳm � y � yS . In this limit, tank treading and transla-
tional velocity become equal and both are of the order of
the Stokes velocity [9]. Tank treading thus restores (up to
factors of order unity) the free mobility which would be
impossible for a rigid object with finite Ra so close to a
substrate. In summary, we can write in each of the two
interesting cases

ȳm � y � yS � Fx�hR and Dy�y � h0R�R2
a .
(10)

Hydrodynamic lift.—Using these results, which will
hold within perturbation theory also for small nonzero tilt
angle a, the lift (7) can be written as

Fl � ahyR4
a�h3

0 � aFx�Ra�R� �Ra�h0�3. (11)

This expression still depends on the unknown tilt angle a

which must be determined next.
In general, the transversal motion considered so far for

the rotationally locked shape at a � 0 generates a torque
M acting in the x, z plane. The origins of this torque
are the lateral force and hydrodynamic interactions. Their
sum will scale as M � hyR2 � FxR. Counteracting
to such a torque is a torque arising from the confining
adhesion potential which favors a � 0. The energy E�a�
of a tilted adhesion disc compared to a nontilted one is
given by E�a� � �p�4�a2V 00R4

a where V 00 � V 00�h0� is
the curvature of the adhesion potential at the minimum
h0. Balancing the torque ≠aE derived herefrom with the
hydrodynamic one leads to hyR2 � aV 00R4

a or

a � hyR2�V 00R4
a � FxR�V 00R4

a . (12)

We have written these relations as if a were positive. For
shear flow, evidence for this assumption arises from the
following facts. Free ellipsoidal vesicles become tilted
with a positive angle [7]. This result can be understood
by splitting up shear flow into a rotational and a strain
component. In the spherical limit, the former causes only
tank treading while the latter leads to a 45± tilt. Since
such a decomposition holds true in the presence of a wall,
an ellipsoidal shape would also exhibit a positive tilt.
878
This has been confirmed explicitly within perturbation
theory for small R�h0 [13]. Even though only a full
hydrodynamic calculation could prove that spherical caps
show the same sign of the tilt as ellipsoids do, we will
continue with a . 0 [14]. Using (12), we can now
calculate the lift force from (7) as

Fl � h2y2R2�h3
0V 00 � F2

x�h3
0V 00. (13)

For further evaluation, we need the specific form of
the adhesion potential V �h�. A fairly universal relation
can be derived if we assume that this potential can be
characterized by two scales only, the location h0 of its
minimum and its depth W � jV �h0�j; see Fig. 1. Then,
one has V 00 � W�h2

0, which implies Fl � F2
x�Wh0.

For a comparison with experimental quantities, it is
convenient to express the adhesion energy W in terms of
an effective tension S � WR2�R2

a using a Young Dupre
equation [11]. For vesicles in shear flow, we can thus
write for the lift

Fl � F2
x�Wh0 � �h2 �g2R3�S� �R2

a�h0R� . (14)

This result is a factor of order R2
a�h0R 	 10 103 larger

than a previous theoretical estimate [4]. On the basis of
the latter, it was argued in Ref. [6] that the experimentally
observed lift was 2 to 3 orders of magnitude larger than
theoretically expected. In light of the present theory,
this apparent discrepancy is most likely due to the factor
R2

a�h0R missed in Ref. [4].
Dynamical unbinding.—The lift, if small enough, will

displace the vesicle slightly from the static equilibrium
at h0. The new dynamical equilibrium position can now
be found by balancing the lift with the restoring force,
Fz � 2pR2

a�h 2 h0�V 00, arising from an expansion of
the potential around its minimum. The relative shift thus
becomes

�h 2 h0��h0 � F2
x�h4

0V 002R2
a � F2

x�W2R2
a . (15)

Typically, if ��h 2 h0��h0� � 1, the lift will be too
strong to be compensated by the attractive potential.
Then, the vesicle will unbind from the substrate under
the action of a lateral force. Using this criterion, we can
determine the critical lateral force Fc

x as Fc
x � h2

0V 00Ra �
WRa. If the lateral force arises from a shear field, the
critical shear rate is �gc � WRa�hR2.

Depending on the specific conditions, measurements for
the adhesion energy W have obtained a vast range of val-
ues from 1021 to 1026 erg�cm2 [2,15,16]. Consequently,
the critical shear rate will also depend strongly on the
conditions. Likewise, for a typical shear rate �g � 1�s,
one can estimate a critical adhesion energy Wc at which
the dynamical unbinding should occur. For a vesicle with
R � 10 mm, Ra�R � 0.1, and h � 1022 erg s�cm3, we
find a critical adhesion energy of Wc � 1024 erg�cm2

which is well within the above range.
The tilt angle ac at the critical value is

ac � Fc
x R�V 00R4

a � Fc
x Rh2

0�WR4
a � h2

0R�R3
a . (16)
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Within this simple assumption about the adhesion poten-
tial, the scaling of the critical tilt is thus predicted to be
determined exclusively by geometrical quantities. Note
that since h0 ø Ra & R, the critical tilt angle can be
very small, e.g., ac 	 1023 for h0 � 10 nm and R, Ra

as above.
Role of shape deformation.—So far, we have assumed

that the shape remains a spherical cap. However, the flow
field could also lead to a deformation of the unbound part
of the vesicle. This deformation would break the fore-
aft symmetry and, thus, would also be a source of lift.
Since such a deformation necessarily implies a smaller
area of contact, it will set in significantly when the hy-
drodynamic stress (� �ghR) becomes comparable to the
adhesion-induced stress (�WR2�R2

a). This happens for
�g � �gc�R�Ra�3 * �gc. The shear rate at which defor-
mation becomes relevant is in the worst case comparable
to (and in the spherical limit Ra ø R much larger than)
the critical shear rate based on tilt. Thus, for the present
scaling analysis, it was safe to consider tilt as the only
relevant variable even though deformation may play an
additional role modifying numerical prefactors.

Beyond unbinding.—What happens with the vesicle for
larger lateral forces Fx . Fc

x ? If the adhesion potential
decays to 0 for large h, one can expect that the vesicle
will continously drift away from the substrate presum-
ably in a combination of tank treading and tumbling mo-
tion. If, however, as often in experiments, the vesicle is
filled with a slightly denser fluid than the surroundings,
gravity will keep it close to the substrate. Such a state
where after detachment the vesicle still keeps its spheri-
cal cap like configuration and translates at about 100 nm
above the substrate has been reported experimentally [6].
We close with a somewhat speculative theoretical analy-
sis of this state. The jump in separation from the sub-
strate of about 100 nm could indicate that a short range
adhesion potential is no longer responsible to the energet-
ics after detachment. Neither can the potential then ex-
ert a restoring torque. Therefore, the total hydrodynamic
torque must vanish. At which angle a this happens (if at
all) can only be determined by a full hydrodynamic the-
ory. The present scaling approach, however, allows to
relate this tilt angle a to the separation h by balancing the
lift force (11) with the gravitational force Fg � gDrV ,
where g 	 1000 cm�s2 and Dr is the density difference.
Such a balance leads to a � �h0�Ra�3�Fg�Fx� �R�Ra�.
Using typical experimental values Fg 	 1027 erg�cm,
Fx 	 1028 erg�cm, h0�Ra 	 0.1, and R�Ra 	 10, one
finds with a 	 0.1 that a quite small tilt angle could gen-
erate enough lift to sustain such a stationary state.

Summarizing perspective.—We have analyzed the hy-
drodynamics of a bound vesicle under a lateral force allow-
ing for tank-treading motion. A positive tilt of the bound
part will generate lift. By combining a lubrication analysis
with scaling arguments, a dynamically induced unbinding
transition is predicted when the lateral force exceeds a criti-
cal value. More quantitative theoretical calculations will
be needed to fill in numerical prefactors necessarily miss-
ing in such a scaling analysis. Such full scale calculations
will also reveal the role of transients and assess whether
the theoretically somewhat speculative stationary translat-
ing state after unbinding exists.
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