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Enhanced Transverse Diffusion in Active Biomembranes
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We study the transverse diffusion of a tagged membrane point in membranes that include active sites,
such as ion pumps. At very short times we find a subdiffusive behavior �r2� � t2�3 as for passive
membranes. At long times we find a few regimes which show a strongly enhanced diffusion, �r2� � ta

with 1 , a , 2. One of the regimes shows a purely ballistic motion a � 2.

PACS numbers: 87.16.Uv, 87.15.Vv, 87.16.Dg
Lipid and surfactant membrane bilayers deserved much
attention in the past two decades [1,2]. While the interest
in these membranes has been very wide, ranging from de-
termining fundamental concepts of fluctuating surfaces to
very practical applications, one key motivation has been
their possible role as simple models for biomembranes.
Most of the studies focused on the stiffness of a mem-
brane bilayer to bending and stretching, the statistics of
its thermal undulations, and the different phases in which
it appears in, and out of, equilibrium.

Biomembranes include, however, among other addi-
tional constituents, carrier proteins that act as active trans-
port sites [3], for example, the ATPase controlling the
Na1-K1 pump. These sites use chemical energy (ATP),
or sometimes the free energy stored in a chemical potential
gradient of another type of ions, in order to “pump” a sol-
ute ion or molecule against its chemical potential gradient.
When an ion is transferred from one side of the membrane
to the other through an active channel, the membrane is
using force to do work on the ion. By “Newton’s third
law,” the ion exerts the same force on the membrane in
the opposite direction. Since ion transfer is a stochastic
process, these ion transfers induce a force noise, in addition
to the thermal noise which results from collisions of the
solvent molecules with the membrane. In addition to their
stochastic function, ion channels are also able to diffuse
around within the two dimensional membrane surface,
which leads to another source of force fluctuations.

The effect of this active noise on the mean square am-
plitude of membrane undulations has been recently studied
by Prost and Bruinsma and their co-workers [4,5]. They
found that the active noise strongly enhances undulation
fluctuations at long distances. This suggests that active
membranes behave quite differently from passive mem-
branes even in terms of physical quantities which are not
directly related to their activity. Even though this is cer-
tainly not the main reason for the presence of active carrier
proteins in plasma membrane, nature may have been able
to take advantage of this “side effect” behavior.

The mean square amplitude (equal time correlation func-
tion) presents only part of the characteristics of the active
noise driven undulations. A more complete information
lies in dynamic quantities. In this paper we focus on the
0031-9007�99�83(4)�872(4)$15.00
transverse mean square displacement (MSD) of a tagged
membrane “monomer.” For passive membranes we have
previously found that thermal bending modes lead to an
anomalous subdiffusion, with a MSD increasing as t2�3

[6,7]. (Regular diffusion is described by a MSD increas-
ing linearly with time.) Below, we show that active noise
enhances the diffusion greatly. Even though, in general,
the MSD cannot be described by a single power law, we
find a few distinct regimes in time for which the MSD in-
creases as �ta with a . 1. Such MSD power laws are
termed enhanced diffusion. They have been found theo-
retically in various generic and novel models [8], but are
rare for complex fluid systems. Except for its physical im-
portance, the enhanced diffusion may have implications on
the biological functionality of the membrane as well.

Consider first the energy cost to slightly bend a piece of
membrane according to a given (Monge gauge) displace-
ment field h� �r�, where �r is a 2D vector on the base (planar)
surface. This can be described by the Helfrich free energy
[9], evaluated for small deformations =h ø 1,

H �
1
2

k
Z

d2r �=2h� �r��2 �
1

2L2

X
�q

kq4h �qh2 �q ,

(1)

where k is the bending modulus, h �q �
R

d2r ei �q? �rh� �r� is
the 2D Fourier transform of h� �r�, and L is the membrane
linear size. The term =2h� �r� is the mean curvature writ-
ten for small deformations. In the main part of the Letter,
we assume that the tension vanishes, even though a certain
amount of tension usually exists in living cells. However,
the tension can be tuned down to zero in a carefully de-
signed experiment, by tuning the osmotic pressure differ-
ence between interior and exterior of the cell. We shall
briefly comment on the effect of tension before the end.

Following Prost and Bruinsma [4,5], active sites of a
surface density n0 are introduced to the membrane. The
local density of active site n� �r, t� is assumed to fluctuate
according to a diffusion equation on the membrane surface
[10]. Thus, the dynamic structure factor of active sites is
decaying according to

�n �q�t�n2 �q�0�� � �n �qn2 �q�e2Dcq2t , (2)
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where Dc is the collective diffusion coefficient. For a trace
of the motion of a single site in the membrane, the MSD
is taken to follow the common simple diffusion law,

�� �rj�t� 2 �rj�0��2� � 4Dst , (3)

where Ds is the self-diffusion coefficient. For simplicity,
we shall assume (as in Ref. [4]) that the density of sites
is small enough so that they can be regarded as noninter-
acting; in this case �n �qn2 �q� � n0 (and Dc � Ds). The
activity of each site j is also assumed to fluctuate in time
(in a given direction, in or out, which will not be allowed
to fluctuate for simplicity) and is described by a stationary
stochastic variable Sj�t�, which has a mean �Sj�t�� � S̄
and fluctuates in time between 0 (probability 1 2 S̄) and 1
(probability S̄). The temporal force exerted on the mem-
brane at a site j is then fj�t� � GSj�t� (for a typical
channel G � kBT�a, where a is the membrane thickness
a � 20 50 A). Different sites are assumed to operate in-
dependently of each other. Adopting the “random tele-
graph process” model for these gate fluctuations [11], the
correlation function for Sj�t� obeys

�Si�t�Sj�t0�� � S̄2 1 di,jg0e2jt2t0j�t , (4)

with g0 � S̄�1 2 S̄�.
The Langevin equation of motion for the displacement

field h� �r, t� which corresponds to this model is [4]

≠h� �r, t�
≠t

� 2
Z

d2r0 L�j �r 2 �r0j�k=4
r0h� �r0, t�

1 lpF� �r, t� 1 z � �r, t� . (5)

Here, z � �r, t� is the thermal white noise, L�r� � 1�8phr

is the Oseen hydrodynamic interaction kernel [12] (with h

the solvent viscosity), lp is the permeation constant, and
F� �r, t� represents the active noise (force per unit area) and
is given by

F� �r, t� �
X
j

d��� �r 2 �rj�t����fj�t� . (6)

We have dropped on the right-hand side of Eq. (5) the term
lpk=4

rh� �r, t� which is negligible for small wave numbers
obeying 4hlpq ø 1. For typical values of lp [5,13],
lp � 1025 cm2 s�g, this corresponds to wavelengths and
times of interest: l ¿ 200 A, t ¿ 1029 s. Fourier trans-
forming � �r ! �q�, Eq. (5) leads to

≠h �q�t�
≠t

� 2vqh �q�t� 1 lpF �q�t� 1 z �q�t� , (7)

where the relaxation frequency vq is given by [14]

vq �
kq3

4h
. (8)

The correlation function of z �q�t� is assumed to be the same
as in the passive membrane case [F �q�t� � 0], for which
it is deduced from the fluctuation-dissipation theorem to
be �z �q�t�z2 �q�t0�� � 2kBTL�q�d�t 2 t0�. This amounts to
assuming that the function of ion pumps does not influence
the thermal collisions between the solvent molecules and
the membrane.

Note that since �F� �r, t�� � n0GS̄ the membrane center
of mass drifts at a constant velocity Vdr � lpn0GS̄ in
the transverse direction. If the experiment is done with
vesicles of mean radius R (instead of free membranes as
assumed here for simplicity), the membrane cannot drift
but a tension s may be induced, �F� � 2s�R. We shall
assume, however, that �F� is carefully balanced by an
osmotic pressure difference to give a vanishingly small net
tension. Note also that in a spherical geometry our Fourier
expansion is admissible only for qR ¿ 1, which means
that only the short time evolution (prior to saturation, see
below) is accurately described.

We first solve for the nonequal time correlation func-
tion in a stationary (steady) state to obtain
1
L2 �h �q�t�h2 �q�0��s �

kBT
kq4 e2vqt 1

l2
pG2n0S̄2

vq�v2
q 2 a2

q�
�vqe2aqt 2 aqe2vqt� 1

l2
pG2n0g0

vq�v2
q 2 b2

q�
�vqe2bqt 2 bqe2vqt� ,

(9a)

where

aq � Dcq2; bq �
1
t

1 Dsq
2. (9b)
For t � 0, Eq. (9a) reduces to the result of Prost and
Bruinsma [4].

Using Eq. (9a) we can calculate the transverse MSD
of a tagged membrane point [7] ��Dh�t��2�s 	 ��h� �r, t� 2

h� �r, 0� 2 Vdr t�2�s. The result may be written in the form

��Dh�t��2�s � ��Dh�t��2�th 1 l2
pG2n0�S̄2��Dh�t��2�CD

1 g0��Dh�t��2�SS� .
(10)
The first term in Eq. (10) is the thermal undulations con-
tribution discussed in Refs. [6,7]. At times short com-
pared to the saturation time �hL3�k it increases as
�kBT�k1�3h2�3�t2�3. The second and third terms are the
contribution of active sites: The second term is due to the
noise generated by the collective diffusion of active sites,
and the third term is due to the noise generated at a given
membrane point both from the random operation of a
single active center near that point and from its diffusion
873
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out of that region. We now discuss the two active noise
terms in turn.

The collective diffusion contribution is given by

��Dh�t��2�CD �
1
p

Z p�a

p�L
dq q

aq

v2
q 2 a2

q

3

"
1 2 e2aqt

aq
2

1 2 e2vqt

vq

#
. (11)

[Note that this does not have the units of �L�2, cf. Eq. (10).]
The evolution described by Eq. (11) is complicated but
may be simplified to two main regimes:

��Dh�t��2�CD 


(
1.62Dc� h

k �4�3t5�3 for t ø t�
c1

1
2pDc

t ln� t
t�
c1

� for t ¿ t�
c1 ,

(12)

where t�
c1 � k2�16h2D3

c . Note that the evolution for t ø
t�
c1 presents a marked enhanced diffusion, with an exponent

5�3, which is significantly larger than unity. This shows
that the active nonequilibrium noise strongly enhances
the motion, in contrast to the thermal, bending energy
controlled undulations which lead to a subdiffusive motion
[6,7]. The long time regime t ¿ t�

c1 is characterized by
an almost regular diffusion and will show up only for
L ¿ k�hDc.

For the numerical analysis, we write Eq. (11) in the
scaling form ��Dh�t��2�CD � Cf�uc, t�tb� where C �
�4hL2�k�2, tb � 4hL3�k is the bending hydrodynamic
relaxation time (and determines the MSD saturation time,
ts � tb�p3), and uc � 4hDcL�k is the ratio of tb to
tD � L2�Dc, the lateral diffusion time over a distance L.
In Fig. 1 we plot f�uc, t�tb� against the reduced time t�tb

for uc � 100, e.g., when k � 10kBT , L � 100 mm, and
Dc � 1027 cm2�s. This implies ts � 104t�

c1. We can

FIG. 1. The contribution of collective site diffusion to the
transverse MSD [Eq. (11)]. The MSD (symbols), divided by
C � �4hL2�k�2, is plotted against t�tb , where tb � 4hL3�k,
for uc � 4hDcL�k � 100. The full line is a power-law fit for
t�tb , 10210: y � ta , a � 1.649. The dashed line is a guide
to the eye for the t lnt regime in Eq. (12).
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clearly note the t5�3 regime at short times, and the t lnt
regime at long times, before saturation occurs.

Next we deal with the contribution of the single site
noise to the MSD. This takes the form

��Dh�t��2�SS �
1
p

Z p�a

p�L
dq q

bq

v2
q 2 b2

q

3

"
1 2 e2bqt

bq
2

1 2 e2vqt

vq

#
. (13)

If 4hDs�k ø 1�
p

Dst, which is obeyed in most typical
situations (see range of parameter values below), the evo-
lution is

��Dh�t��2�SS 


8><
>:

1.62Ds�h

k �4�3t5�3 for t ø t�
s3

1
2p � 4h

kt �2�3t2 for t�
s3 ø t ø t

1.08t�h

k �2�3t1�3 for t ¿ t ,
(14)

where t�
s3 � �ht�k�2D3

s . Quite unexpectedly, we have
��Dh�t��2�SS � t2 in the intermediate regime, which cor-
responds to a purely ballistic motion and is presumably the
strongest enhanced diffusion possible for this model.

The numerical evaluation of Eq. (13) is depicted in
Fig. 2 for a typical case corresponding to hDs�k ø
1�
p

Dst. The t5�3 increase at short times is followed, at
t�tb . 10213, by a nearly perfect power law ta with a 

1.89, which is close to the a � 2 obtained in Eq. (14).
(The small discrepancy is due only to the too narrow time
regime in this case.) For t�tb . 1027 we clearly show
in Fig. 2 the t1�3 regime.

Consider now the overall MSD [Eq. (10)]. The numeri-
cal evaluation for one typical case is plotted in Fig. 3. At

FIG. 2. The contribution of single site noise to the transverse
MSD [Eq. (13)]. The MSD (symbols), divided by C �
�4hL2�k�2, is plotted against t�tb for us � 4hDsL�k � 10
and tb�t � 108. The short dashed line is a power-law fit for
t�tb , 10214: y � ta , a � 1.655. The full line is a power-
law fit for 10212 , t�tb , 1029: a � 1.886. The long dashed
line is a power-law fit for 1024 , t�tb , 1022: a � 0.351.
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FIG. 3. Transverse MSD (symbols), in cm2, against the
time, in seconds, corresponding to the following parameter
values: h � 1022 poise, lp � 1025 cm2 s�g, G � 1025 dyn,
n0 � 4 3 1012 cm22, k � 10kBT , S̄ � 0.1, g0 � S̄�1 2
S̄� � 0.09, t � 1023 s, Dc � Ds � 1028 cm2�s, and L �
1022 cm. These parameters correspond to uc � us � 10
and tb�t � 108. The lower full line is a power-law fit
for t , 1028 s: y � ta , a � 0.661. The dashed line is a
power-law fit for 1026 , t , 5 3 1025 s: a � 1.865. The
upper full line is a power-law fit for 1 , t , 10 s: a � 1.461.

very early times, which may not be practically reached
in experiment, the t2�3 of the thermal undulations always
dominates. A crossover to the active noise regime oc-
curs at some time t�

a (t�
a � 1026 s in Fig. 3), which we

estimate to be (for typical cases where t�
s3 ø t�

a ø t)
t�
a � k1�4�kBT �3�4t1�2��h�l2

pG2n0g0�3�4�. Taking [5,13]
k � 10kBT , lp � 1025 cm2 s�g, n0 � 4 3 1012 cm22,
g0 � 0.1 �S̄ � 0.1�, h � 1022 poise, t � 1023 s [15],
and G � 1025 1026 dyn, we find t�

a in the range t�
a �

1027 1025 s, a rather short time. Consistently, we have
hDs�k ø 1�

p
Dst (with Ds � 1027 1029 cm2�s) and

t�
s3 � 10212 1026 s, so that in most cases t�

s3 ø t�
a ø

t, as assumed. The active noise regime is first domi-
nated by the �t2 single site contribution (�t1.87 in Fig. 3
due to a too narrow regime). Just as the latter starts to
cross over (at t � t, t � 1023 s in Fig. 3) to a �t1�3

increase, the collective site contribution, which evolves
as t5�3, becomes dominant. This occurs at times t�

b �
�g0t�S̄2Dc�3�4�k�h�1�2 (t�

b � 0.1 s in Fig. 3). The t5�3

evolution continues up to times t � t�
c1. For Dc in the

range Dc � 1027 1029 cm2�s, we find t�
c1 in the range

t�
c1 � 0.1 105 s, which means that it usually is much

greater than t�
b . In Fig. 3 we find, for t . 1 s, nearly a

perfect power law �t1.46, which corresponds to the end of
the t5�3 regime as it crosses over to a (narrow) t lnt regime
and saturation.

Finally, we comment on the effect of tension, which
suppresses both the thermally and the actively excited
undulations. If the tension s is so large such that hk1�2�
s3�2 , t�

a, a crossover to a tension dominated evolution
[7] � lnt occurs already for t , t�

a (thermal undulations
regime), and the active noise regime t . t�
a is entirely

influenced by tension rather than by bending energy. The
leading evolution for t . t�

a is then �t, noticeably stronger
than lnt. (This, however, later crosses over to a � lnt
growth and saturation.) Thus, the enhancement due to ac-
tive noise is also visible under tension, and can be clearly
detected in experiment.

Our analysis shows that, in most typical cases relevant
to plasma membranes, the active noise strongly dominates
over the thermal noise in a wide range of time, ranging
from a microsecond to many seconds. The predicted en-
hanced diffusion, MSD � ta , with 1 , a , 2 depending
on the time regime, makes a clear fingerprint for the pres-
ence of such active noise. The time scale ranging from
a fraction of a second to the seconds range makes this
evolution amenable to enhanced videomicroscopy studies,
whereas the microseconds to milliseconds range can be
studied by dynamic light scattering. It is possible that liv-
ing cells use this enhanced diffusion for their needs, e.g.,
as an efficient dynamic probe of the environment.
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