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Anisotropic Peak Effect due to Structural Phase Transition in the Vortex Lattice
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It is shown that the recently observed new peak effect in YBCO could be explained by the softenin
of the vortex lattice due to a structural phase transition in the vortex lattice. At this transition squar
lattice transforms into a distorted hexagonal one. While conventional peak effect is associated with t
softening of shear modes (elastic modulusc66 vanishes) at melting, in this case the relevant mode is
“squash” mode (c11 1 c22 2 2c12 vanishes).

PACS numbers: 74.60.Jg, 74.20.De, 74.25.Dw
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The conventional peak effect, a sudden increase of
critical current, has been observed in great variety of bo
low- [1] and high-Tc [2] superconductors. In conven
tional superconductors the peak effect was theoretica
explained a long time ago by Larkin and Ovchinniko
[3], while in high-Tc superconductors like untwinned
YBa2Cu3O72d (YBCO) it is generally believed that the
peak is due to the softening of the shear mode just bef
the first order melting transition of the vortex lattice (VL
takes place [4]. Recently however another peak in t
critical current in YBCO has been discovered on a lin
almost parallel to theT axis starting from the melting line
atH � 9 T and continuing to lower temperatures (Fig. 1
First it appeared only as a “fishtail” in magnetization hy
teresis loops [5], but recently a direct measurement of
critical current [6] clearly established a line presumab
corresponding to some transition in the vortex matt
(circles in Fig. 1).

Independently from these findings recent theoretical a
vances indicate that in YBCO there could exist a structu
phase transition (SPT) in the VL. Starting from certa
microscopic models Ginzburg-Landau (GL) theory for th
d 1 s wave superconductor on a square crystal lattice w
constructed and the VL solution was studied [7]. The th
ory was simplified [8,9] so that it included just one, critica
order parameter and allowed easier derivation of ess
tial VL properties. In all cases analysis of the mixed sta
shows that a “distorted” hexagonal VL stable at lower ma
netic fields transforms into a square VL oriented at t
angleq � 45± relative to the crystallographic�100� axis
at higher fields. Experimentally, only a significantly dis
torted hexagonal phase has been observed in YBCO
far by means of scanning tunneling microscopy (STM
[10] and small-angle neutron scattering (SANS) [11,12
Measurements, however, were performed at relatively l
magnetic fields. A possible location of the SPT line ca
be inferred using the known theoretical dependence of
VL shape on a magnetic field [9]. In borocarbide supe
conductors, an analogous SPT was firmly established
SANS and STM experiments [13] and the GL formalis
had been proven adequate [14,15].
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In this note we show that SPT in the VL manifests it
self as an anisotropic peak in the critical current. Thu
we propose that the second line of peaks in the critic
current of untwinned YBCO [6] could be explained by
the softening of the “squash” elastic mode of VL (usin
terminology of [16]) on the line of SPT. We find that the
characteristic size of vortex bundles depends on the orie
tation and we predict that the peak current oriented alo
�100� and�010� axes is larger than that oriented along�110�
and �11̄0� by a factor of

p
2. These features can distin-

guish our scenario from another one in which a transitio
(or crossover) from the topologically ordered (Bragg) glas
to vortex glass or pinned liquid was proposed [17].

We start with a description of SPT in VL and an
estimate of its location on the phase diagram of untwinn
YBCO. Qualitatively, anisotropy of the gap functions in
both thed-wave (the dominant component) and thes-
wave channels leads to an asymmetric four lobe shape
vortex cores [7]. This, in turn, causes VL to prefer th
square arrangement. We employ a simple one field (d-
wave) formulation of GL theory for fourfold symmetric

FIG. 1. Phase diagram of untwinned YBCO after Ref. [6
with solid circles being positions of the additional peak in
the critical current. The dashed line is a possible location of t
phase transition line from the distorted hexagonal lattice to t
square lattice. Taking account of fluctuations would transfor
the phase transition line, as shown by the solid line.
© 1999 The American Physical Society
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superconductors [8,9],

F�c� �
h̄2

2mab
jDcj2 1

h̄2

2mc
j=zcj2 2 ajcj2 1

b

2
jcj4

1 ´j�D 2
y 2 D 2

x �cj2. (1)

Here Di � =i 2 i�e��c�Ai , i � x, y is the covariant
derivative, and e� is the charge of the Cooper pair. The
material parameter ´ quantifies deviations from the exact
rotational symmetry. We assume that the magnetic field is
in the c direction and is constant (far enough fromHc1, this
is a good approximation since k ¿ 1). At a certain value
of ´ there is a phase transition from distorted hexagonal
(point symmetry group D2h) to a more symmetric square
lattice (D4h). It is important for the calculation of the
elastic moduli to consider the VL of a most general form
(see inset in Fig. 2). An elementary cell is specified by
vectors a and b with an angle q between them. Angle
w defines the orientation of VL relative to the crystal-
lographic �100� axis. Because of the flux quantization
condition the relation ab sinq � 2p holds. One solves
the linearized GL equation perturbatively in the dimen-
sionless anisotropy parameter h � ´mabe�H and obtains

F�r, s, w� � 2 �H 2 Hc2�T ��2�2b�r, s, w� , (2)

b�r, s, w� � bA�r, s� 1 h�e4iwd�r, s� 1 c.c.� , (3)

bA �
p

s
X
e2pir�n22m2�22ps�n21m2�,

d �
p

s
X

�8p2s2n4 2 6psn2 1 3�8�

3 e2pir�n22m2�22ps�n21m2�,

where b � �jcj4	��jcj2	2 is the generalized Abrikosov
geometrical parameter, r � �b�a� cosq and s �
�b�a� sinq . The summation runs over all the integers or
half integers m and n. To find the VL structure the energy

FIG. 2. Dependence of shear modulus c66 and squash modu-
lus csq � c11 1 c22 2 2c12 on parameter h which controls the
strength of the fourfold symmetric term in the free energy.
Squash modulus vanishes at the phase transition point. Inset:
Most general form of VL.
of Eq. (2) is minimized analytically over w and numeri-
cally over r and s. At the minima r always equals to
1�2 while the value of s depends on h and we denote it
as s̄ below. It was established [9,14] that the transition
occurs at hc � 0.0238. For every h , hc there are two
degenerate minima (one of them has w � 0) which
correspond to VL related by the p�2 rotation around the
c axis. On the mean field level the phase transition is
of the second order with mean field critical exponents.
For example, we calculated the dependence of the angle
q � arctan�2s̄� on h close to the transition point and
found that q � 3.3�hc 2 h�1�2. These analytical results
were corroborated and extended by numerical simulations
[15]. This is in agreement with the general result that
perturbation theory in the GL model is valid far beyond its
naive range of validity extending as far as to Hc2�10 [18].

The line of STP in VL (dashed line in Fig. 1) is paral-
lel to the T axis and goes at certain HSPT � hc��´mabe��.
Using q � 53.5 6 .5± at H � 2 T from Ref. [11] we es-
timate that for the sample of Ref. [6] HSPT 
 6 T. Since
the SANS experiment sample had twinning planes which
prefer the square lattice, the actual line in an untwinned
sample is roughly at the correct place and we just fit the
data with a straight line at 9 T. Although a convincing
estimate can be made only after similar measurements are
performed on the same sample, the order of magnitude is
correct. In some theoretical works the SPT line is slightly
tilted (in a positive or negative direction) [9,14,15]. This
is the effect of yet another four derivative term ´0j�D 2

x 1

D 2
y �cj2. This term is rotationally symmetric and simply

modifies Hc2. The tilt angle is very small, of the order of
hc � 1022.

Using thermodynamic arguments we calculate all the
relevant nondispersive elastic moduli from Eqs. (2) and
(3). The dispersive tilt modulus c44 [19] is not changed
significantly compared to the usual case without the asym-
metry term, the last term of Eq. (1). In order to obtain all
“ in-plane” elastic moduli of the flux line lattice we first
choose a particular form of distortion and then express
the excess free energy corresponding to this distortion in
terms of elastic moduli. Distortions of the lattice can be
described by the displacement vector ui with i, j � x, y.
Symmetric combinations of derivatives are denoted by
uij � �1�2� �≠jui 1 ≠iuj�, while the antisymmetric one
describing rigid rotations around the c direction is vxy �
�1�2� �≠yux 2 ≠xuy�. The distortion energy of a deformed
two dimensional lattice is Fdist � Fel 1 Frot with Frot �
zuxyvxy 1 �1�2�z 0v2

xy and

Fel �
c11

2
u2
xx 1

c22

2
u2
yy 1 c12uxxuyy 1 2c66u

2
xy . (4)

Since the compression modulus is very large near the
phase transition compared to all others and will not play
a role in what follows, we assume that the magnetic flux
through the elementary cell of the lattice is constant.
This means that the area of the unit cell has to remain
fixed: uxx 1 uyy � 0. Subject to this restriction it is
845
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possible to obtain the following two combinations of the
four elastic moduli: the shear c66 and the squash csq �
c11 1 c22 2 2c12 in addition to z and z 0. We used the
following infinitesimal displacements: u � m�6yêx 1

xêy�, u � m�xêx 2 yêy�, u � myêx , u � mxêy , and
obtained csq � F0bss�2s�2, c66 � F0brrs2 1 z�4,
and z � z 0 � 32hF0jdj, where F0 � dF�db and sub-
scripts of b denote partial derivatives. The right-hand
sides of the above equations are evaluated at equilibrium
values s � s̄ and r � 1�2 on both sides of the SPT line.

Note that the rotation modulus z is proportional to
the anisotropy parameter h. Calculated shear and squash
moduli are presented in Fig. 2. The dependence of shear
modulus on anisotropy is weak. On the other hand, the
squash modulus vanishes on the SPT line linearly in jh 2

hcj but with different coefficients above and below the
transition point,

csq �

(
8.7j1 2

h

hc
j �H 2 Hc2�T ��2, hc , h ,

5.5j1 2
h

hc
j �H 2 Hc2�T ��2, hc . h .

(5)

This is similar to the behavior of the soft moduli at
structural phase transitions in solids.

The softening of the VL due to the vanishing of the
squash modulus should lead to some peculiarities of those
properties of the superconductor that depend on the elas-
ticity of the VL. Below we argue that a peak in the critical
current should appear once one crosses the transition line.
To determine critical current jc we follow the “dynamical
approach” [19,20] and write down the equation of motion
for VL,

sB2

c2

≠u
≠t

� 2
dFel

du
2

dFpin

du
1

1
c

j 3 B , (6)

where Fel is given by Eq. (4) and s is the normal state
conductivity. Equation (6) is solved perturbatively in the
pinning energy Fpin �

R
d3r ´�r�. The change of en-

ergy due to pinning ´�r� depends on both the disorder
potential and the vortex form factor; see [19]. One es-
timates its correlator as

R
d3r �´�r�´�0�	eiK?r � �2pF0�

B�e2j2K2 � �2pF0�B�W �K� [4], where K is a reciprocal
lattice vector. The second order correction to the flux flow
velocity v0 � �c�sB2�j 3 B is

2
Dv
v0

�
pB
F0

X
K

Z d3k
�2p�3

W�K�K2K2
k

P�k�2 1 � jBKk

c �2
, (7)

P�k� � c44k
2
z 1

c66�k2
x 2 k2

y �2 1 csqk2
xk

2
y

k2
x 1 k2

y
, (8)

where Kk � K ? v0�y0. In Eqs. (7) and (8) the fact that
the compression modulus is much larger than the other
moduli was used. Let the current j flow at an angle u

relative to the �100� axis. Since Kj � 1 and W�K� falls
off exponentially we retain in the sum only the nearest
846
neighbors in the square lattice with Kk � cos�u 6 p�4�,

2
Dv
v0

� 2W �0�

√
2pB
F0

!7�4

� jBc44c66csq�c�21�2f�u� ,

f�u� � j cos�u 1 p�4�j3�2 1 j cos�u 2 p�4�j3�2.
(9)

The angular dependence is fourfold symmetric. To evalu-
ate the critical current the condition Dv � 2v0 is used,

jc�u� �
4cW�0�2� 2pB

F0
�7�2

Bc44c66csq
f�u�2. (10)

Therefore the critical current along the crystallographic
�100� or �010� axes is larger by a factor of

p
2 compared

to the one along �110� or �11̄0�. For untwinned YBCO
one estimates [4] W�0� � U2

0Bj2np , where np is point
pinning centers density and U0 is the depth of an
individual pinning potential. As in the melting peak effect
[20] the effect of thermal depinning can be taken into
account by an additional factor �1 1 T�Tdp�211�2 where
Tdp is the depinning temperature. The case of “small
bundles” where the dispersion of c44 is important can be
treated analogously [4,19]. Because of different slopes of
the moduli csq as a function of h 2 hc [see Eq. (5)] the
peak shape is asymmetric provided the general 1�B trend
is eliminated,

jcB �

8<:
1

8.7�B2Bstr � , B , Bstr ,
1

5.5�Bstr2B� , B . Bstr .
(11)

Of course the cutoff is understood when the character-
istic size of the correlation volume (the Larkin domain) is
no longer large compared to the distance between vortices.
In this case the elasticity theory becomes inapplicable. To
determine the applicability region of the elasticity theory
we calculate the correlation length which is the most im-
portant characteristic of the mixed state in the collective
pinning theory. It is deduced from the displacement cor-
relator �u2�r�	 � ��u�r� 2 u�0��2	 � 2W �0�

R d3k
�2p�3 �1 2

cos�k ? r��Gij�k�Gij�2k� [19] where Gij�k� is the elastic
Green’ s function. In the present case we have �u2�r�	 �
2W�0�

R d3k
�2p�3 �1 2 cos�k ? r��P�k�22 where P�k� is de-

fined in Eq. (8). To determine the correlation length in a
certain direction of bn within the collective pinning theory
one writes �u2�Rn̂n̂�	 � j2. The correlator in the c direc-
tion does not change compared to the case of the hexagonal
lattice, �u2�Rc�	 � 2W �0�Rc��p3�2c66c44�, while in the
a-b plane it depends on the angle f that n̂ makes with the
crystallographic direction �100�: �u2�Rf�	 � �W�0�Rf�
p2csqc

1�2
66 c

1�2
44 �f̃�f�. The function f̃�f� calculated nu-

merically is close to that of Eq. (9). The results are sig-
nificantly different compared to the case of the peak effect
associated with the VL melting where c66 vanishes and
�u2�Rab�	 � W�0�Rab��2p2c

3�2
66 c

1�2
44 �. We see that 1�csq

replaces 1�c66. In the present situation the Larkin domain
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is not only asymmetric with respect to a, b versus c di-
rections. Because of the particular orientation of the soft
modes destroying the square lattice the correlation length
becomes asymmetric within the a-b plane as well,

Rc �
p3�2c66c44j2

2W �0�
, Rf �

csqc
1�2
66 c

1�2
44 j2

W�0�f�f�
.

Now we supplement the dynamical approach calculation
of jc with a simpler and more intuitive derivation from
the correlation volume. The critical current in the certain
direction u with respect to the crystal is determined by
equating the Lorentz force to the pinning force. The
pinning energy for the relaxed lattice is linked to the in-
plane elastic energy due to the displacement of the order
j in the direction u 1 p�2 caused by the Lorentz force
[19]. The elastic energy is Uc�u� � csq�j�Ru1p�2�2Vc
where Vc is the correlation volume. Therefore the critical
current obtained from the balance of the Lorentz force
and the pinning force is jc�u� � �c�B�Uc�u���jVc� �
csqj0�j�Ra�2f�u 1 p�2�2 where j0 � cHc��3

p
6 pl� is

the depairing current. This agrees with the dynamical
approach result.

There are two types of excitations near the transition.
The first one is highly anisotropic: soft modes which are
transverse waves propagating in �110� and �11̄0� directions.
The second one is domain walls similar to those in Ising
magnets. The transition in our case is of the group—
subgroup type. Such transitions are generally continuous
(second order). One can use the standard methods [21]
to write the GL theory in terms of the order parameter
F � q 2 p�4. Using the expression for the energy as a
function of an angle Eq. (2) we obtain

F � �2a�h 2 hc�F2 1 �b�2�F4� �H 2 Hc2�T ��2

with a � 7.0 and b � 1.2. It would be very interesting
to directly observe the soft modes by excitation using ac
current or other means.

Near the melting line the fluctuations become important.
Experimental results [6] show that near the melting line the
second peak line sharply turns down. On the basis of the
present considerations it can be qualitatively understood.
The reason is the symmetry breaking pattern. Liquid is a
state in which both the continuous translation symmetry
and the fourfold symmetry are unbroken. In the solid
the translation symmetry is spontaneously broken down
to its discrete subgroup, while the fourfold symmetry
is still intact. Finally in the distorted hexagonal phase
both symmetries are broken. The thermal fluctuations
favor the square lattice, so first the fourfold symmetry is
restored. On the basis of symmetry considerations alone it
is impossible to determine whether the line should follow
the melting line; see the solid line in Fig. 1 or that there
exists a triple point. The phenomenon is somewhat remi-
niscent of that of Alexander and McTague’ s [22] in solids.

To summarize the structural phase transition in the
vortex lattice of YBCO or borocarbide superconductors
leads to an anisotropic peak effect via the vanishing of
squash elastic modulus. We calculated the value of the
peak in the critical current and its shape. The second order
transition is accompanied by soft modes.
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