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Quantum Monte Carlo Simulations of the Half-Filled Two-Dimensional Kondo Lattice Model
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The 2D half-filled Kondo lattice model with exchange J and nearest neighbor hopping t is considered.
It is shown that this model belongs to a class of Hamiltonians for which zero-temperature auxiliary field
Monte Carlo methods may be efficiently applied. We compute the staggered moment and spin and
quasiparticle gaps on lattice sizes up to 12 3 12. The competition between the RKKY interaction and
Kondo effect leads to a continuous quantum phase transition between antiferromagnetic and spin-gapped
insulators. This transition occurs at J�t � 1.45 6 0.05.

PACS numbers: 71.27.+a, 71.10.Fd
The Kondo lattice model (KLM) describes a band of
conduction electrons interacting with local moments via an
exchange interaction J. This model is relevant for the un-
derstanding of heavy electron materials [1,2]. The nature
of the ground state results from competing effects. The
polarization cloud of conduction electrons produced by a
local moment may be felt by another local moment. This
provides the mechanism for the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [3] with effective exchange
Jeff� �q� ~ 2J2 Rex� �q, v � 0�, x� �q, v� being the spin sus-
ceptibility of the conduction electrons. On the other hand,
the same polarization cloud may form a singlet bound
state with the local moment. In the single impurity case,
this happens at the Kondo temperature TK ~ efe21�JN�ef �,
where ef is the Fermi energy and N�ef� is the density of
states [4]. Comparing energy scales, the RKKY interac-
tion dominates at small J and the Kondo effect dominates
at large J. Thus a quantum transition between magneti-
cally ordered and disordered phases is anticipated.

The KLM we consider is written as
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�ss,s0c�i,s0 with �s being the Pauli matri-
ces. A constraint of one fermion per f site is enforced.
At J�t ø 1 this model maps onto the periodic Anderson
model (PAM) [5] at strong coupling [6]. Quantum Monte
Carlo (QMC) [7] methods constitute an efficient tool for
the study of the PAM in various dimensions [8–10]. The
one-dimensional version of the KLM has been extensively
studied [11]. In particular, at �n� � 2 (half-band filling
or one conduction electron per local moment), the Kondo
effect dominates at all values of J�t. In two dimensions,
variational Monte Carlo methods [12] as well as series ex-
pansions around the strong coupling limit [13] support the
existence of a critical point. The aim of this paper is to go
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beyond the above approximative approaches. We show
how to efficiently simulate the KLM with the projector
QMC (PQMC) algorithm [14,15]. This method yields ex-
act zero-temperature results and is free of the notorious
sign problem at half-band filling. This stands in contrast
to previous approaches [16] which generate a sign prob-
lem even at �n� � 2. Using this algorithm, we study the
half-filled case as a function of J�t.

Our starting point is the Hamiltonian,
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with n
f
�i,s
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f�i,s . This Hamiltonian has all the prop-
erties required for an efficient use of QMC methods.
To avoid working with continuous fields, we use the
approximate Hubbard-Stratonovitch (HS) transformation
introduced in Refs. [17,18] to decouple the J term. This
transformation introduces systematic errors of the order
�Dt�3, where Dt corresponds to an imaginary time step.
Since this order is higher than the systematic error pro-
duced by the Trotter decomposition, it is negligible. As
for the Hubbard term, we have found it essential to
use Hirsch decomposition in terms of Ising spins which
couple to the density rather than to the z component
of the magnetization [19]. Although this forces us to
work with complex numbers, it conserves SU�2� symme-
try for a given HS configuration. As argued in Ref. [20],
this provides an efficient algorithm for the calculation of
imaginary time displaced spin-spin correlation functions
[21] from which we will determine the spin gap. The
ground state of H (2), jC0�, is obtained by projection. A
trial wave function, jcT �, required to be a single Slater de-
terminant and nonorthogonal to the ground state is prop-
agated along the imaginary time axis till convergence is
reached [14,15]. With the above HS transformations and
the appropriate choice of jCT � [17], particle-hole symme-
try leads to the absence of the sign problem at �n� � 2.

The relation of the above model to the KLM model is
seen by rewriting Eq. (2) as
© 1999 The American Physical Society
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The number of doubly occupied and empty f sites is a
conserved quantity. Denoting by Pn the projection onto
the subspace with n doubly occupied and empty f sites,
one obtains

HP0 � HKLM 2 N�Uf�4 1 J� . (5)

Thus, in principle, it suffices to consider a trial wave
function satisfying P0jCT � � jCT � to ensure that
exp�2QH� jCT � � exp�2QHKLM� jCT �. The coupled
constraints: P0jCT � � jCT �, and jCT � is a Slater
determinant forces us to choose S

f,z
�i

jCT � � 6
1
2 jCT �,

thus breaking SU�2� spin symmetry. Since the KLM
conserves total spin, this symmetry has to be restored by
the imaginary time propagation. When the energy gap
to the first excited spin state is small—as is certainly
the case when long-range magnetic order is present—
restoring this symmetry is extremely expensive. To avoid
this problem and since the ground state of the KLM at
half-filling on a bipartite lattice has S � 0 [22,23], we
choose a spin singlet trial wave function. During the
imaginary time propagation PnjCT � will be suppressed
by a factor e2nDEQ in comparison to P0jCT �. In two

FIG. 1. Momentum distribution for the f and c electrons.
(a) �k � k�1, 1� and (b) �k � k�1, 0�. Within our precision,
nf� �k� � 1 for all considered values of J�t. To achieve this we
have chosen values Uf�t ranging from Uf�t � 0.5 �J�t � 0.2�
to Uf�t � 2 �J�t � 1.6�. As J�t grows, nc� �k� becomes
smoother.
limiting cases, we estimate DE � Uf�4 for J�t ø 1 and
DE � 3Uf�8 for J�t, J�Uf ¿ 1. To confirm that we
are well into the P0 subspace we plot in Fig. 1 the single
particle occupation number n
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f�j,sjC0� � d�i,�j , a property which may
be realized only if P0jC0� � jC0�. Owing to Eq. (5),
jC0� is nothing but the ground state of the KLM.

We now discuss the half-filled case as a function of
J�t and start with the spin degrees of freedom. To
establish long-range magnetic order, we compute the
quantities Sa��r� �

4
3 � �Sa��r� ? �Sa��0�� as well as its

Fourier transform: Sa� �q � �
P

�r ei �q?�rSa��r�. We con-
sider separately the conduction �a � c� and localized
�a � f� electrons. Long-range antiferromagnetic order is
present when limL!` Sa�L�2, L�2� � limL!` Sa� �Q �
�p, p�	�L2 takes a finite value. Figure 2 plots both of
the above quantities versus 1�L for the f electrons. For
lattice sizes ranging from L � 6 to L � 12 the QMC
data extrapolates linearly to a finite value for J�t # 1.45.

FIG. 2. Spin-spin correlations for the f electrons versus
inverse linear length L for several values of J�t. The solid
lines are least square fits to the form a 1 b�L. The symbol at
1�L � 0 corresponds to the extrapolated value. As apparent,
both Sf�L�2, L�2� and Sf � �Q��L2 scale to the same value. The
staggered moment mf

s �
p

limL!` Sf �L�2, L�2�.
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Similar results are plotted in Fig. 3 for the con-
duction electrons. The resulting staggered moment

ma
s �

q
limL!` Sa� �Q��L2 is plotted versus J�t in Fig. 6

below. At J�t � 0.2, mf
s � 0.557�3�—a value much

larger than for the Heisenberg model: mH
s � 0.3551�3�

[24]. In contrast, mc
s is small at small values of

J�t —mc
s � 0.072�6� at J�t � 0.4. In comparison,

the half-filled Hubbard model at U�t � 4 leads to
ms � 0.2 [7]. At the mean-field level, the behavior of
mf,c

s at weak coupling may be captured by the ansatz
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The conduction electrons are thus subject to a staggered
field of magnitude ~ J. Since Rex� �Q, v � 0� is singu-
lar, this immediately leads to long-range magnetic order
with m̃c

s ~ �J�t� ln2�J�t� for J�t ø 1. The behavior
of m̃c,f

s bears some similarity with the QMC data (see
Fig. 6 below). At larger values of J�t the Kondo effect
destroys magnetic order. Both m

f
s and mc

s scale continu-
ously to zero as J�t approaches Jc�t � 1.45 (see Fig. 6
below).

Once long-range magnetic order is destroyed
�J�t . 1.45�, the ground state is expected to evolve
smoothly to the strong coupling limit, J�t ¿ 1. In this
limit, jC0� is given by a direct product of singlets on
the f-c bonds of an elementary cell. Starting from this
state, a triplet excitation has a dispersion relation (up to
second order in t�J) D�2�

s � �q� � J 2
16t2

3J 2
2t
J e� �q�

[11]. To compute Ds� �q� numerically we con-
sider S� �q, t� �

4
3 �C0j �S� �q, t� ? �S�2 �q, 0�jC0� where

�S� �q� � �Sf� �q� 1 �Sc� �q� and �S� �q, t� � etH �S� �q�e2tH .
For tt ¿ 1, S� �q, t� ~ exp�2tDs�q�	 with Ds� �q� �

FIG. 3. Same as Fig. 2 but for the conduc-
tion electrons. In order to satisfy the relation
limL!` Sf �L�2, L�2� � limL!` Sf � �Q��L2, we fit the data
to the form a 1 b�L 1 c�L2. The staggered moment
mc

s �
p

limL!` Sc�L�2, L�2�.
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E0�S � 1, N , �q� 2 E0�S � 0, N�. Here E0�S, N , �q�
denotes the ground state energy with total spin S, momen-
tum �q, and particle number N � L2. As in the strong
coupling limit and for all considered values of J�t, the
spin gap Ds � min �qDs� �q� � Ds� �Q� with �Q � �p , p�.
Figure 4a plots the raw data from which we obtain the
spin gap and, in Fig. 4b, Ds versus 1�L. A linear extrap-
olation to the thermodynamic limit leads to the results
plotted in Fig. 6 below. Within our accuracy, the value
of J�t for which long-range magnetic order vanishes
corresponds to the value of J�t where the spin gap
vanishes.

Finally, we consider the quasiparticle gap. As appar-
ent from the single particle occupation number, nc� �k�
(Fig. 1), the quasiparticle gap grows continuously with
growing values of J�t. To obtain an accurate estimate
of this quantity, we compute �C0j

P
s c

y
�k,s

�t�c �k,sjC0�

which scales as e2tDqp� �k� when tt ¿ 1. Here, Dqp� �k� �
E0�N� 2 E0�N 2 1, �k�. In the strong coupling limit and
to first order in t�J, D

�1�
qp� �k� � 3J�4 2 e� �k��2 and thus

takes a minimum at �k � �p, p�. Our QMC results for
values of J�t ranging from J�t � 0.4 to J�t � 2 are con-
sistent with Dqp � min�kDqp� �k� � Dqp�p, p� [25]. The
size scaling of Dqp is presented in Fig. 5, and the extrapo-
lated value is plotted in Fig. 6 versus J�t. As apparent,
Dqp remains finite and evolves smoothly through the quan-
tum transition. In the above discussed mean-field approach
based on the ansatz � �S

f
�i

� � �21��im̃f
s �ez�2, the quasiparticle

FIG. 4. (a) lnS� �Q, t� versus tt for J�t � 1.6. The solid lines
correspond to the least square of the tail of S� �Q, t� to the form
ae2tDs . The thus obtained value of the spin gap Ds is plotted
versus 1�L in (b). The solid lines in (b) are least square fits to
the form a 1 b�L.
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FIG. 5. Same as Fig. 4 but for the quantityP
s �C0jc

y
�k,s

�t�c �k,s jC0� so as to obtain Dqp .

gap scales as J�4 in the small J�t limit. Such a behavior,
equally seen in one dimension [11,26], is to a first approxi-
mation consistent with our data (see Fig. 6).

In summary, we have presented an efficient auxiliary
field QMC algorithm to simulate zero-temperature prop-
erties of the KLM. At half-band filling where the sign
problem is absent, we calculated the staggered moment,
the spin gap, and the quasiparticle gap on lattice sizes up
to 12 3 12. Our results are summarized in Fig. 6. We
observe a continuous quantum phase transition between
long-range antiferromagnetic and spin-gapped phases.
This transition occurs at Jc�t � 1.45 6 0.05 in good
agreement with previous approximative results [12,13].

FIG. 6. Staggered moment �mf,c
s �, spin �Ds�, and quasiparticle

�Dqp� gaps of the KLM at half-band filling and T � 0. All
plotted quantities are extrapolated to the thermodynamic limit.
At J�t � 0.2 we were not able to distinguish mc

s from zero.
The quasiparticle gap is finite and evolves continuously
between both phases. Given that the charge degrees of
freedom remain gapped, we expect the observed quantum
phase transition to belong to the universality class of the
O�3� nonlinear sigma model [27,28].

A. Muramatsu is thanked for instructive conversations.
The simulations were carried out on the T3E of the
HLRS-Stuttgart, as well as on the T90 and T3E of the
HLRZ-Jülich.
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