
VOLUME 83, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 26 JULY 1999
On-Off Intermittency in Stochastically Driven Electrohydrodynamic Convection in Nematics
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We report on-off intermittency in electroconvection of nematic liquid crystals driven by a
dichotomous stochastic electric voltage. With increasing voltage amplitude we observe laminar phases
of undistorted director state interrupted by shorter bursts of spatially regular stripes. Near a critical
value of the amplitude the distribution of the duration of laminar phases is governed over several
decades by a power law with exponent 23�2. The experimental findings agree with simulations of the
linearized electrohydrodynamic equations near the sample stability threshold.

PACS numbers: 61.30.–v, 05.40.–a, 47.20.–k, 47.54.+r
Systems at a threshold of stability driven by a stochastic
or chaotic process coupling multiplicatively to the system
variables may exhibit on-off intermittency characterized
by specific statistical properties of the intermittent signal.
Quiescent (or laminar) periods (off states) are interrupted
by bursts of large variation (on states); the duration of
laminar periods is governed by power laws with expo-
nents universal over a broad class of different systems.
Early theoretical studies considered systems with a few
degrees of freedom modeled by differential equations [1]
and mappings [2]. There is increasing interest in systems
with many degrees of freedom [3], described by random
map lattices [4], larger systems of coupled nonlinear ele-
ments [5], and partial differential equations [5,6]. Experi-
mental results are available mainly for nonlinear electric
circuits [7]; on-off intermittency was also observed in a
spin wave experiment [8], in optical feedback [9], and in
a gas discharge plasma system [10]. Here we first report
about on-off intermittency in a spatially extended dissipa-
tive system, viz., electroconvection (EC) in nematic liquid
crystals driven by a stochastic voltage.

EC in planarly aligned nematics is a standard system for
pattern formation, for recent reviews see, e.g., [11]. In the
presence of an electric field E a spontaneous fluctuation of
the director leads due to the anisotropic conductivity to a
formation of space charges which tend to destabilize the
homogeneously ordered state. With increasing strength of
the driving field one observes a hierarchy of convection
patterns of increasing complexity. The patterns depend
on external parameters such as amplitude, frequency, and
wave form of the driving voltage which are conveniently
adjustable in the experiment. The hydrodynamic flow
induces a modulation of the director field and thus of the
effective indices of refraction which leads to transmission
patterns easily observed with a microscope.

In previous experiments, the superposition of a deter-
ministic ac field with a stochastic field, E � Edet�t� 1

Estoch�t�, was studied. A variety of noise induced phe-
nomena including stabilization or destabilization of the
homogeneous state, and a change from continuous to dis-
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continuous behavior of the threshold as a function of the
noise strength were observed [12–16] and have stimulated
theoretical work [17,18].

As long as the characteristic time of the noise tstoch
is small compared with characteristic times of the system
the threshold towards pattern formation appears sharp as
for deterministic driving. It is however typical for EC
in nematics that one of the systems characteristic times
decreases both with increasing strength of the threshold
voltage and with increasing wave number of the pattern
and may reach the order of tstoch [18]. In this case,
one observes intermittent bursts of a regular spatial stripe
pattern which makes a naı̈ve experimental determination
of the stochastic threshold difficult [16]. A similar
phenomenon was noticed in a highly doped nematic
material for a very high strength of the noise [13] where
a direct transition towards chaos occurs via intermittent
bursts of spatially incoherent structures embedded in a
homogeneous background.

In this paper, we consider the simplest case of pure
stochastic excitation, E � Estoch�t�. To achieve a statis-
tical characterization we have determined experimentally
the distribution of the duration t of laminar, i.e., undis-
torted phases (off states) which are interrupted by bursts
of a stripe pattern (on states). Approaching a critical volt-
age from below, this distribution is governed by a power
law t23�2 over several orders of t as it is typical for on-
off intermittency. This result is confirmed by simulations
of the linearized electrohydrodynamic equations at the
sample stability threshold [18].

We use the standard experimental setup with a com-
mercial cell (Linkam) providing planar anchoring of the
director by antiparallel rubbed polyimide coatings, two
transparent ITO electrodes of 5 3 5 mm2, and a cell gap
of d � 50 mm. The nematic material is a mixture of four
disubstituted phenylbenzoates [16] which has a nematic
range from below room temperature to 70.5 ±C. The cell
temperature is controlled at 30 ±C by a Linkam heating
stage. Images are recorded using a Jenapol-d polarizing
microscope and a Hamamatsu B/W camera with controller
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C2400. The transmission images of light polarized along
the director easy axis �n0 are recorded digitally. We re-
solve the images in 500 3 400 (330 3 250) pixels with
8-bit grey scale and calculate standard deviations in real
time at a rate of 1�7 (1�20) s in the conductive (dielectric)
regime.

For the driving process we use the dichotomous
Markov process (DMP) which is easily generated and
facilitates the theoretical analysis. The DMP EDMP

t
jumps randomly between 6E with an average rate of
a. The distribution of times t̃ between two consecutive
jumps is a exp�2at̃�; the autocorrelation decays ex-
ponentially, �EDMP

t EDMP
t0 � � E2 exp�22a�t 2 t0��, i.e.,

tstoch � 1�2a. We will refer to n � a�2 as the mean
frequency and to E as the amplitude of the noise. Both
in experiment and simulation, sequences of the DMP are
generated by the same algorithm; technically t̃ is limited
to vary between 1024 and 104 s.

For excitation by a periodic square wave, one finds a
typical frequency dependent threshold voltage Uc (U �
Ed) for the stability against the formation of normal rolls,
cf. Fig. 1. There is a sharp transition at nc � 38 Hz
between the conductive regime (oscillating space charges)
characterized by a wave number kx � p�d and the
dielectric regime (oscillating director deflections), where
kx is an order of magnitude larger; cf. Fig. 1.

For stochastic driving, we have observed bursts of
the stripe pattern uniform across the system already be-
low the onset threshold for a periodic voltage of the
same frequency. The stochastic voltage has a broad fre-
quency spectrum which contains low frequency contribu-
tions. Occasional bursts of the convective pattern can be
expected at voltages above the dc threshold (n � 0 in
Fig. 1a). With increasing voltage the frequency of the
bursts increases. In Fig. 1a we have plotted the voltages
which correspond to a ratio of 75% (circles) and 25% (tri-
angles) of laminar phases, respectively. The full squares

FIG. 1. Threshold voltages and wave numbers for driving
with periodic and stochastic square waves of (mean) fre-
quency n. Experimental data (diamonds: periodic case; circles,
triangles, and full squares: stochastic case, see text; dashed
lines guide the eyes) are compared with results from the two-
dimensional theory (full line: periodic case; dotted line: sto-
chastic case).
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at n � 60 and 180 Hz indicate the voltages for which the
experimentally determined distribution of laminar periods
t is best described by a t23�2 law (see below). The theo-
retical results obtained from the sample stability criterion
explained below agree very well with the experimental
data. (Both in the periodic and the stochastic case we
have used the same material parameters.)

The set of images in Fig. 2 shows the stripe pattern at
different times of a burst just at the threshold of the on
state and the fully developed pattern in both the dielectric
and the conductive regime. We characterize the intensity
modulation of these patterns by srel � �s 2 s0���1 2

s0� where s is the normalized standard deviation from
the average intensities taken over all pixels of the image at
a given instant, and s0 is the value of s for zero voltage.
This procedure allows a real time characterization of the
patterns. It is justified since the largest Fourier coefficient
dominates the intensity modulation, and both quantities
have nearly equivalent traces. Although the relation
between srel and the director deflections is nonlinear,
the approach used here is sufficient if we are interested
only in the frequency and duration of the bursts and not
primarily in their amplitudes.

In Fig. 3 we present trajectories of srel�t� observed
in the experiment for different noise amplitudes but the
same seed of the driving DMP. For the laminar phase
we define the period in which srel�t� is below a threshold
slam � 0.1 where the choice of slam is not crucial. The
laminar periods are interrupted by bursts of the convection
structures, the frequency of which increases with the
applied voltage amplitude U.

In Figs. 4 and 5 we compare the experimentally de-
termined distributions p�t� for the occurrence of laminar
phases of duration t with those obtained in simulations
in the conductive and the dielectric regime, respectively.

FIG. 2. Snapshots of the bursts of roll patterns [(a),(b)]
in the conductive regime (n � 60 Hz, kx � 1.2 3 103 cm21,
area size 200 3 164 mm2) and [(c),(d)] in the dielectric
regime (n � 180 Hz, kx � 7.2 3 103 cm21, area size 134 3
102 mm2) at different times. (a) and (c) show the patterns just
at the threshold of the on state (srel � 0.1) whereas in (b) and
(d) the rolls are fully developed (srel � 0.8).
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FIG. 3. Bursts of the intensity modulation srel�t� in the
conductive regime (a) just at the threshold and (b) 0.3 V above
threshold for identical trajectories of the DMP which makes
about 9 3 104 jumps in the period shown (n � 60 Hz). The
dashed lines indicate slam above which the system is in the on
state and else in the off state.

The experimental histograms contain data from about 2500
bursts of srel�t� recorded over 1 6 h. With increasing
voltage amplitude the frequency of bursts increases, i.e.,
longer laminar periods occur less frequently. At a criti-
cal voltage Uc (full squares in Fig. 1a) the distribution is
governed by a power law p 	 t23�2 over several decades.
Deviations occur for very small t due to the finite time res-
olution and for very large t due to the background fluctua-
tions from thermal noise. Increasing the amplitude beyond
the critical voltage leads to exponential corrections to the
power law discussed below. Increasing the voltage further,
the system does not reach a state of permanent convection,
instead the patterns become more and more spatially irreg-
ular while keeping their intermittent character.

The theoretical description of the laminar phases is
based on the linearized nemato-electrohydrodynamic equa-

FIG. 4. Normalized distribution p�t� in the conductive
regime (n � 60 Hz) just at the stability threshold and slightly
above. Shown are results (a) from experiment for U � 14.6 V
(squares) and 15.3 V (triangles), and (b) from simulations for
U � Uc � 18.2 V (full line) and U � 19.0 V (dashed line).
Mode selection gives a wave number kx � 1484 cm21 used
in the simulation. The dash-dotted lines indicate a power
law t23�2.
tions. In a two-dimensional idealization using stress-free
boundary conditions, inserting as a test mode a periodic roll
pattern characterized by wave numbers kx and kz � p�d,
they reduce to the ordinary differential equations [18]

��z � C�t��z, �z �

√
q
c

!
, (1)

where q and c are the amplitudes of the space charge
density and of ≠xw (w is the angle between director and
electrode plates), and

C�t� � 2

µ
1�Tq sHEDMP

t

aEDMP
t L1 2 L2E2

∂
. (2)

The parameters Tq, sH , a, L1, and L2 depend on material
properties and on the wave number kx which is determined
by minimizing the threshold voltage, cf. [18]. Between
two consecutive jumps of EDMP

t at tn and tn11 the matrix
C�t� is constant, and the time evolution is given by �z�t� �
Tsn �t 2 tn��z�tn� for tn , t , tn11 where Ts�t� is the
time evolution matrix for sgnEDMP

t � s. Iteration gives
the formal solution [18] for a given realization of the
driving process with jumps at the random times tn , n �
1, . . . , n,

�z�t� � Tsn �t 2 tn� · · · Ts0�t1 2 t0��z�t0� . (3)

The threshold voltage Uc for a given wave number is
determined by the zero of the largest Lyapunov expo-
nent l1 of the product of random matrices in (3) which
can be calculated analytically as well as the second Lya-
punov exponent l2 , l1 at the threshold [18]. Whereas
tsys,1 � 1�jl1j diverges at the threshold we found for
the examples presented here in the conductive (dielectric)
regime tsys,2 � 1�jl2j � 3.0 3 1023 s (0.9 3 1023 s )
which is of the same order as tstoch � 1�2a � 4.2 3

1023 s (1.4 3 1023 s).

FIG. 5. Normalized distribution p�t� in the dielectric regime
(n � 180 Hz) slightly below Uc, just at Uc, and slightly above.
Shown are (a) experimental results for U � 76.0 V (circles),
79.5 V (squares), and 83.0 V (triangles), and (b) simulations
for U � 82.0 V (dotted line), U � Uc � 84.9 V (full line),
and U � 90.0 V (dashed line). Mode selection gives kx �
7670 cm21 used in the simulation. Dash-dotted line as in
Fig. 4.
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The numerical simulation generates trajectories
�z�t� starting from a small nonzero initial value �z�t0�,
cf. Eq. (3). To model the background of thermal fluc-
tuations of c we introduced a lower cutoff cmin, i.e.,
c ! cminsgnc for jcj , cmin. In the dielectric regime
we additionally reset q in a similar way. A trajectory is
considered laminar as long as jcj is smaller than a given
threshold clam � 2 3 103cmin. At Uc the distribution
is a power law t23�2 over several orders of t with
deviations for very small and very large t as in the
experiment; cf. Figs. 4b and 5b. The range of validity
of the power law increases when cmin�clam is lowered.
Also for voltages smaller or larger than Uc the shape of
the simulated distributions is very similar to that obtained
in experiment. The shoulder for large t becomes more
pronounced for voltages below the critical voltage.

To distinguish between effects due to thermal fluctu-
ations and due to a deviation from the stability thresh-
old DU � U 2 Uc we have also performed simulations
with cmin � 102300clam (which is obviously too small for
comparison with experiment). At Uc the power law holds
now over at least eight decades. Above threshold, we have
checked for DU ø Uc that the simulations agree very well
with p 	 t23�2 exp�2const 3 DU2t�. The mean dura-
tion of laminar periods behaves like t̄ 	 DU21 over sev-
eral decades for U * Uc. Similar laws have been obtained
analytically in [2] for a one-dimensional mapping.

We have found on-off intermittency in a spatially ex-
tended dissipative system driven by multiplicative noise
at parameter values where the first instability is towards
spatially regular structures. If the strength of the noise ap-
proaches a critical value both experiment and simulations
of the electrohydrodynamic equations lead to a power law
with exponent 23�2 for the distribution of laminar peri-
ods. The simulations show that this critical value is just
the threshold of stability according to the sample stability
criterion [18].
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