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Origin of the* —1" Spectral Law in Wall-Bounded Turbulence
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The existence of the=1” spectral law in wall turbulence is explained by the effect of superposition
of Kolmogorov's eddy cascades generated at all possible distances from the wall, within an equilibrium
layer. This concept is justified using only the well-known properties of wall-bounded flows.
The presence of coherent structures appears to be not essential for the inverse-power law. The
model predicts the-1 scaling for the rangél/H) = k = (1/z), which agrees very well with the
measurementsk(is the wave numberH is the external scale of the flow, andis the distance from
the wall).

PACS numbers: 47.27.Nz, 47.27.Ak

According to the original Kolmogorov’s [1] concept, velocity shear generate a hierarchy of eddies attached (in
velocity spectra consist of three ranges: (1) the prothe sense of Townsend [8]) to the wall so that their char-
duction range, where spectral behavior has not beeacteristic scales are proportional to the distané®m the
identified specifically; (2) the inertial subrange, wherewall (Fig. 1).
spectra follow the “-5/3” law (there is no energy produc-  The above two properties are well tested and accepted
tion or dissipation in this subrange); and (3) the viscousn wall turbulence studies. Using property B we can
range, where spectra decay much faster than in the inertisdasonably assume that due to flow instability and velocity
subrange, due to dissipation. In 1953 Tchen [2] suppleshear the energy injection from the mean flow into
mented this model, for shear flows without solid bound-turbulence occurs at each distancérom the wall, with
aries, with one more region intermediate between regionthe generation of eddies with characteristic sdale z.

(1) and (2). In this region, the wave-number spectrunmThese eddies transfer their energy at ratéo smaller
S;i(k) decays ass;;(k) ~ k!, wherek is the longitudi- eddies and may be viewed as energy cascade initiators.
nal wave number in the direction of the mean flow whereln other words, we suggest that at eacha separate
homogeneity applies. From Tchen's [2] analysis it fol- Kolmogorov's cascade is initiated which is superposed
lows that the—1 and —5/3 scaling regions are the result with other eddy cascades initiated at oth&. Figure 2

of strong (1) and weak {5/3) interactions between the presents a sketch explaining this process. As a result
mean flow and fluctuation vorticities. He also suggesteaf this superposition of cascades, the energy dissipation
that the —1 region should exist in velocity cospectra ¢, at a particular distance presents a superposition
S;;(k) [note that in the inertial subrangg;(k) ~ k~773. of down-scale energy fluxes;, generated at this and

After Tchen’s [2] pioneering work, several new expla- at larger z (the contribution from cascades generated
nations of the—1 spectral scaling have appeared. Theyat smallerz is negligible; justification for this may be
fall into three groups: (1) further developments of Tchen’s
spectral balance approach [3,4]; (2) similarity and dimen-
sional analysis [5,6]; and (3) analysis of near-wall co- £ u
herent structures ([7], and references therein). Although d
numerous measurements (see, e.g., Ref. [4] for review)
confirm the—1 scaling, its origin is still unclear. In this
paper we propose an alternative explanation for the origin
of the —1 scaling which does not require consideration
of coherent structures and which is based on simple phe-
nomenology developed for wall turbulence. -———z

In our considerations we use the following properties of -z
wall turbulence (close to the wall, within the logarithmic - @@— —zi
layer): (A) The shear stressis approximately constant —
and equal tor = pu? (u. is the friction velocity, ando
is fluid density). The production of the total turbulenceFIG. 1. A wall-bounded flow structure showing the vertical

i i iacinationdistributions of local mean velocity and turbulence energy
en(irr]g)ﬁ Isdaptp();)O)ﬂmately e3qua| IEO thf en_ﬁ:gy dISSIpatlondissipationsd. Ellipses represent eddies generated at distances
&q that leads ta™ = g4 ~ u./z (Fig. 1). These proper- ™" "onq 7, (arbitrarily selected for clarity) as a result of
ties describe Townsend's [8] equilibrium wall layer with mean flow instability. Note that exact eddy morphology is not
constant shear stress. (B) The mean flow instability an@ssential for this consideration.

Distance from the wall z

734 0031-900799/83(4)/734(3)$15.00 © 1999 The American Physical Society



VOLUME 83, NUMBER 4

PHYSICAL REVIEW LETTERS

26 JuLy 1999

;22,27

e |
X il
Tl lanl 0n
ThimE =
Al <
+~ & i
™ | I m
0 | .
S~k S~k ES
i
1
1
1
1
1
T
e = o
K 3 2
? 2 ?
2~ ~ N
SN =L

FIG. 2. The effect of superposition of energy cascades mea
sured at z; and initiated at all possible z. Note that for clar-
ity only three cascades initiated at distances z;, z,, and z; are
shown, asin Fig. 1.

found in Townsend [8]). Thus, the energy flux & at
any z depends on the scale under consideration, i.e., on
wave number k. The flux & increases with &k until it
reaches 1/z and then, for k = (1/z), stabilizes being
equal to e, (Figs. 2 and 3). In other words, at a given
distance z, the energy flux e(k) for k <z, ! represents
the energy dissipation &, observed at z = k~!; z > z,.
Using property A (i.e, e ~ u?/z) and bearing in mind
that L ~z ~ k™! as in Fig. 2, we have =(k) ~ ulk
for (1/H) =k = (1/z). The scde H is an externd
scale of the flow (e.g., thickness of a boundary layer).
Following this phenomenological concept and using the
inertial subrange relationship S;; (k) ~ 2> k=53 we can
write for the autospectra

Sii(k) ~ (k)PP ~ W2k for (1/H) <k = (1/2),

1)
and
Si(k) ~ sk ~ X2k fork = (1/7).
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FIG. 3. Schematized velocity autospectra S;;(kz) and energy
transfer rate e(kz) showing (1) the large-scale energy pro-
duction range (k > H™'); (2) the —1 scaling range (™! <
k < z71), where eddy cascades initiated at each z are super-
posed and (k) changes as e(k) ~ k; (3) the inertial subrange
(k > z7!) which results from superposition of inertial sub-
ranges generated at each z and, therefore, (k) = g4; and (4)
the dissipative range.

Accounting for Egs. (1) and (2), velocity autospectra for
wall-bounded flows can be summarized asin Fig. 3. The
inverse Fourier transform of Egs. (1) and (2) produces
the second order structure function D(r) that shows
Kolmogorov's “2/3" scaling at r < z [D(r) ~ r?/?]
and quasilogarithimic behavior at z < r < H [D(r) ~
In(r/z) + f(r/H)].

Similar considerations are also vaid for velocity
cospectra.  According to Tchen [2], Lumley [9], and
Wyngaard and Cote [10], the cospectrum S, (k) in the
inertial subrange is S, (k) ~ sy (dii/dz)k~"/3 (u and w
are the longitudinal and vertical velocities, respectively; u
is the loca mean velocity). Following our concept and
using property A, i.e., di/dz ~ u./z and & ~ u3/z, this

relationship becomes S,.,, (k) ~ u;2s k= 7/3; thus

Suw(k) ~ u2e(k)*Pk773 ~ u2k™!
for (1/H) =k = (1/2), ©)

and

S (k) ~ u2e(®)Pk73 ~ w26l k7

fork = (1/z). 4)

The above considerations are based on the concept of the
nonintermittent energy cascade known as K41 [1,11,12].
This concept has been found to be in good agreement
with measurements for moments of the order of 2 or
less [11,12]. Therefore, in this note we restrict ourselves
to this simple concept, though intermittency corrections
(which are negligible for the second order moments) can
be also incorporated.

The —1 scaling has been originally predicted [2—4,13]
for regions in shear flows, not necessarily near the wall,
where the ratio m = (dU /dz)/(e/v)%> of the mean shear
dU /dz to the turbulent shear (¢/v)% is not small, i.e.,
of the order of 1. However, published data revea the
—1 spectra scaling in the near-wall flow regions only,
independently of (dU/dz) (v/e)*> (see [4] for a recent
review). For example, velocity spectra of Champagne
et al. [14] in the nearly homogeneous turbulent shear
flow at m = 0.1 do not show the —1 scaling while near-
wall measurements of Antonia and Raupach [15] reveal
such a scaling even at smaller m = 0.06. Such behavior
contradicts [2—4,13] but is consistent with the model
presented in this Letter. This model may also be extended
to the equilibrium wall layers with variable stress [8]. Al
these suggest that the —1 spectral scaling is an exclusive
feature of Townsend's [8] equilibrium wall layers and
should not exist in homogeneous shear or free shear flows.

In conclusion, this Letter proposes a simple phe-
nomenological model explaining the —1 law in wall tur-
bulence as a result of superposition of eddy cascades
generated at al possible z. Only well-known properties
of wall-bounded flows have been used. The presence of
coherent structures does not appear to be essential for the
inverse-power law. The model predicts the —1 scaling
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for therange (1/H) = k = (1/z), which agrees very well
with measurements.

The study has been conducted under Contract
No. NIW701 from the Marsden Fund administered by the
Royal Society of New Zealand.
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