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Origin of the “21” Spectral Law in Wall-Bounded Turbulence
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The existence of the “21” spectral law in wall turbulence is explained by the effect of superpositio
of Kolmogorov’s eddy cascades generated at all possible distances from the wall, within an equilib
layer. This concept is justified using only the well-known properties of wall-bounded flow
The presence of coherent structures appears to be not essential for the inverse-power law.
model predicts the21 scaling for the range�1�H� # k # �1�z�, which agrees very well with the
measurements (k is the wave number,H is the external scale of the flow, andz is the distance from
the wall).

PACS numbers: 47.27.Nz, 47.27.Ak
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According to the original Kolmogorov’s [1] concept
velocity spectra consist of three ranges: (1) the pr
duction range, where spectral behavior has not be
identified specifically; (2) the inertial subrange, wher
spectra follow the “25�3” law (there is no energy produc-
tion or dissipation in this subrange); and (3) the visco
range, where spectra decay much faster than in the iner
subrange, due to dissipation. In 1953 Tchen [2] supp
mented this model, for shear flows without solid boun
aries, with one more region intermediate between regio
(1) and (2). In this region, the wave-number spectru
Sii�k� decays asSii�k� � k21, wherek is the longitudi-
nal wave number in the direction of the mean flow whe
homogeneity applies. From Tchen’s [2] analysis it fo
lows that the21 and25�3 scaling regions are the resul
of strong (21) and weak (25�3) interactions between the
mean flow and fluctuation vorticities. He also suggest
that the 21 region should exist in velocity cospectra
Sij�k� [note that in the inertial subrangeSij�k� � k27�3].

After Tchen’s [2] pioneering work, several new expla
nations of the21 spectral scaling have appeared. The
fall into three groups: (1) further developments of Tchen
spectral balance approach [3,4]; (2) similarity and dime
sional analysis [5,6]; and (3) analysis of near-wall co
herent structures ([7], and references therein). Althou
numerous measurements (see, e.g., Ref. [4] for revie
confirm the21 scaling, its origin is still unclear. In this
paper we propose an alternative explanation for the orig
of the 21 scaling which does not require consideratio
of coherent structures and which is based on simple p
nomenology developed for wall turbulence.

In our considerations we use the following properties
wall turbulence (close to the wall, within the logarithmi
layer): (A) The shear stresst is approximately constant
and equal tot � ru2

� (u� is the friction velocity, andr
is fluid density). The production of the total turbulenc
energyP is approximately equal to the energy dissipatio
´d that leads toP � ´d � u3

��z (Fig. 1). These proper-
ties describe Townsend’s [8] equilibrium wall layer with
constant shear stress. (B) The mean flow instability a
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velocity shear generate a hierarchy of eddies attached (
the sense of Townsend [8]) to the wall so that their char
acteristic scales are proportional to the distancez from the
wall (Fig. 1).

The above two properties are well tested and accepte
in wall turbulence studies. Using property B we can
reasonably assume that due to flow instability and velocit
shear the energy injection from the mean flow into
turbulence occurs at each distancez from the wall, with
the generation of eddies with characteristic scaleL � z.
These eddies transfer their energy at rate´ to smaller
eddies and may be viewed as energy cascade initiato
In other words, we suggest that at eachz a separate
Kolmogorov’s cascade is initiated which is superpose
with other eddy cascades initiated at otherz’s. Figure 2
presents a sketch explaining this process. As a resu
of this superposition of cascades, the energy dissipatio
´d at a particular distancez presents a superposition
of down-scale energy fluxes,́, generated at this and
at larger z (the contribution from cascades generated
at smallerz is negligible; justification for this may be

FIG. 1. A wall-bounded flow structure showing the vertical
distributions of local mean velocityu and turbulence energy
dissipation´d . Ellipses represent eddies generated at distanc
z1, z2, and z3 (arbitrarily selected for clarity) as a result of
mean flow instability. Note that exact eddy morphology is no
essential for this consideration.
© 1999 The American Physical Society
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FIG. 2. The effect of superposition of energy cascades mea-
sured at z3 and initiated at all possible z. Note that for clar-
ity only three cascades initiated at distances z1, z2, and z3 are
shown, as in Fig. 1.

found in Townsend [8]). Thus, the energy flux ´ at
any z depends on the scale under consideration, i.e., on
wave number k. The flux ´ increases with k until it
reaches 1�z and then, for k $ �1�z�, stabilizes being
equal to ´d (Figs. 2 and 3). In other words, at a given
distance zg the energy flux ´�k� for k , z21

g represents
the energy dissipation ´d observed at z � k21; z . zg.
Using property A (i.e., ´ � u3

��z) and bearing in mind
that L � z � k21 as in Fig. 2, we have ´�k� � u3

�k
for �1�H� # k # �1�z�. The scale H is an external
scale of the flow (e.g., thickness of a boundary layer).
Following this phenomenological concept and using the
inertial subrange relationship Sii�k� � ´

2�3
d k25�3 we can

write for the autospectra

Sii�k� � ´�k�2�3k25�3 � u2
�k21 for �1�H� # k # �1�z� ,

(1)

and

Sii�k� � ´�k�2�3k25�3 � ´
2�3
d k25�3 for k $ �1�z� .

(2)

FIG. 3. Schematized velocity autospectra Sii�kz� and energy
transfer rate ´�kz� showing (1) the large-scale energy pro-
duction range �k . H21�; (2) the 21 scaling range �H21 ,
k , z21�, where eddy cascades initiated at each z are super-
posed and ´�k� changes as ´�k� � k; (3) the inertial subrange
�k . z21� which results from superposition of inertial sub-
ranges generated at each z and, therefore, ´�k� � ´d ; and (4)
the dissipative range.
Accounting for Eqs. (1) and (2), velocity autospectra for
wall-bounded flows can be summarized as in Fig. 3. The
inverse Fourier transform of Eqs. (1) and (2) produces
the second order structure function D�r� that shows
Kolmogorov’s “2�3” scaling at r , z �D�r� � r2�3�
and quasilogarithimic behavior at z ø r ø H �D�r� �
ln�r�z� 1 f�r�H��.

Similar considerations are also valid for velocity
cospectra. According to Tchen [2], Lumley [9], and
Wyngaard and Cote [10], the cospectrum Suw�k� in the
inertial subrange is Suw�k� � ´

1�3
d �du�dz�k27�3 (u and w

are the longitudinal and vertical velocities, respectively; u
is the local mean velocity). Following our concept and
using property A, i.e., du�dz � u��z and ´ � u3

��z, this
relationship becomes Suw�k� � u22

� ´
4�3
d k27�3; thus

Suw�k� � u22
� ´�k�4�3k27�3 � u2

�k21

for �1�H� # k # �1�z� , (3)

and

Suw�k� � u22
� ´�k�4�3k27�3 � u22

� ´
4�3
d k27�3

for k $ �1�z� . (4)

The above considerations are based on the concept of the
nonintermittent energy cascade known as K41 [1,11,12].
This concept has been found to be in good agreement
with measurements for moments of the order of 2 or
less [11,12]. Therefore, in this note we restrict ourselves
to this simple concept, though intermittency corrections
(which are negligible for the second order moments) can
be also incorporated.

The 21 scaling has been originally predicted [2–4,13]
for regions in shear flows, not necessarily near the wall,
where the ratio m � �dU�dz���´�n�0.5 of the mean shear
dU�dz to the turbulent shear �´�n�0.5 is not small, i.e.,
of the order of 1. However, published data reveal the
21 spectral scaling in the near-wall flow regions only,
independently of �dU�dz� �n�´�0.5 (see [4] for a recent
review). For example, velocity spectra of Champagne
et al. [14] in the nearly homogeneous turbulent shear
flow at m � 0.1 do not show the 21 scaling while near-
wall measurements of Antonia and Raupach [15] reveal
such a scaling even at smaller m � 0.06. Such behavior
contradicts [2–4,13] but is consistent with the model
presented in this Letter. This model may also be extended
to the equilibrium wall layers with variable stress [8]. All
these suggest that the 21 spectral scaling is an exclusive
feature of Townsend’s [8] equilibrium wall layers and
should not exist in homogeneous shear or free shear flows.

In conclusion, this Letter proposes a simple phe-
nomenological model explaining the 21 law in wall tur-
bulence as a result of superposition of eddy cascades
generated at all possible z. Only well-known properties
of wall-bounded flows have been used. The presence of
coherent structures does not appear to be essential for the
inverse-power law. The model predicts the 21 scaling
735
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for the range �1�H� # k # �1�z�, which agrees very well
with measurements.

The study has been conducted under Contract
No. NIW701 from the Marsden Fund administered by the
Royal Society of New Zealand.
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