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We report observations of stabilized traveling-wave (TW) convection in a regime in which
uncontrolled system exhibits repeated, erratic growth and abrupt decay of spatially localized bur
TW. By applying as feedback a spatially varying Rayleigh-number profile computed from the meas
convection pattern, we suppress this behavior and stabilize states of unidirectional TW with spa
uniform amplitude on the unstable branch of the subcritical bifurcation to convection. This allow
to measure the nonlinear coefficients of the corresponding quintic complex Ginzburg-Landau equa
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The work of Ott, Grebogi, and Yorke awakened intere
among physicists in using feedback to control unsta
dynamical behavior in systems which are chaotic in t
absence of control [1]. It is often possible to mainta
such systems in unstable but regular dynamical states
making small changes to a global control parameter
response to deviations of the measured dynamics fr
the target state [2]. However, extending such feedba
techniques to the control of erratic patterns in spatia
extended systems remains a difficult and open proble
Computationally, there has been some success in apply
spatially varying feedback to control spatiotemporal cha
in coupled-map lattices [3] and in continuum system
[4]. Experimentally, it is sometimes possible to reduc
erratic pattern dynamics to a chaotic single-channel sign
which can then be controlled using temporal chaos-con
techniques [5]. But full control of erratic patterns i
a spatially extended system, using spatially distribut
feedback, has yet to be demonstrated.

In this paper, we describe experiments on a spatially
tended pattern-forming system in which erratic behav
has been suppressed by using spatially distributed fe
back. We study convection in a thin, horizontal layer of a
ethanol-water mixture which is heated from below, in a p
riodic, quasi-one-dimensional geometry. The control p
rameter is the Rayleigh numberR, which is proportional to
the temperature different applied vertically across the flu
layer, and we define a stress parameter´ � �R 2 Rc��Rc,
whereRc is the threshold Rayleigh number for the ons
of convection. In this system, the first instability is osci
latory, and it triggers a subcritical bifurcation to a nonlin
ear state of traveling waves (TWs). For the parameters
the present experiments, the first nonlinear TW state s
aboveRc is known as “dispersive chaos” and is characte
ized by the repeated, erratic appearance and sudden
lapse of spatially localized bursts of TW [6]. By applyin
a spatially varying stress-parameter profile, computed fr
real-time, spatially resolved measurements of the comp
TW amplitude, we have stabilized a state of unidirection
TW with the spatially uniform amplitude and wave num
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ber far onto an unstable TW branch which is born fro
the quiescent state via a subcritical bifurcation. By tra
ing this unstable branch, we have accurately measured
coefficients of the fifth-order complex Ginzburg-Landa
equation (CGLE) which describes the bifurcation. Relat
techniques have been used to stabilize the quiescent s
above the onset of steady convection in a pure fluid [7]

The experimental system has previously been descri
in detail [8]. The convection cell is a long, narrow annu
lus, formed by a plastic disk and ring which are clamp
between a mirror-polished, silicon bottom plate and
transparent, sapphire top plate. The annular channel
height d � 0.2597�2� cm, radial widthGr � 2.074�3�d,
and mean circumferenceGf � 91.10�8�d. The cell is
filled with a 0.4 wt % solution of ethanol in water at mea
temperature 27.60±C, with separation ratioc � 20.020,
Prandtl number Pr� 5.92, and Lewis numberL � 0.0085
[9]. Wave numbers and frequencies are rendered non
mensional by scaling with the cell heightd and the vertical
thermal diffusion timety � 45.8 sec, respectively.

The top plate of the convection cell is cooled b
temperature-controlled, circulating water, and the botto
plate is electrically heated by two systems. The ma
heater is a round, thin-film heater glued to the unders
of the plate. To apply spatially varying Rayleigh-numb
profiles, a second heating system is used, consisting
24 small resistors, pressed against the underside of
bottom plate in a ring just outside the footprint of th
convection cell. These trim heaters are connected
parallel with the main heater, and individually compute
controlled shunt resistors are used to adjust the fractio
power dissipated in each. An arbitrary Rayleigh-numb
profile—including one that is nominally uniform—can b
applied with a fractional azimuthal variation of�1 2� 3

1024 rms, as measured using the pulse-drift techniq
[10], and a temporal stability of�2 5� 3 1025 rms over
time scales shorter than a day. Drifts over longer perio
are removed as described below and previously [6,8].

In this system, convection patterns can in gene
take the form of superpositions of clockwise- an
© 1999 The American Physical Society
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counterclockwise-propagating TW, of the form
A�x� sin�k�x�x 6 v�x�t�. In the experiments described
here, the amplitude, wave number, and oscillation fre-
quency A�x�, k�x�, and v�x� vary only on spatial scales
much longer than 2p�km (the subscript m denotes the
spatial average of the measured profile). Near onset, the
typical oscillation period tosc � 2p�vm is 90–100 sec.
The TW pattern is monitored using a shadowgraph system
and is recorded at 360 azimuthal locations by a circular
array of photodiodes that is sampled by two computers.
One computer, used only for independent quantitative
data acquisition when the dynamics have been verified to
be stable, samples the system at a rate �4�tosc for many
oscillation cycles. Complex demodulation of this signal
[11] is used to extract A�x� and k�x� with a precision
of 63% in A and 60.2% in k. All of the dynamical
states studied here consist of unidirectional TW with
mean wave number km � 2pNr�Gf � 3.035, where
Nr � 44 is the quantized number of wavelengths filling
the convection cell. For unidirectional TW, temporal
demodulation of the time series at several spatial points
yields the oscillation frequency vm with a fractional
precision of �1 3 1024. A second computer, dedicated
to fast control of the system, samples the camera signals
for short periods at regular intervals and uses a simplified
demodulation program to extract A�x� and k�x� in a single
temporal oscillation cycle. These profiles are used to
compute the feedback Rayleigh-number profile applied to
the convection cell.

The set point that is varied in these experiments
is the spatially averaged TW amplitude, denoted As.
Control at a chosen value of As causes the amplitude
and wave number profiles to become spatially uniform,
with values Am � As and km � 3.035, respectively, the
TW frequency to settle to a spatially uniform value
vm�As�, and the Rayleigh number to setting to a value
R�As�. From the measured quantities R�As� and vm�As�,
we compute ´�As� � �R�As� 2 Rref��Rref and Dv�As� �
vm�As� 2 vref, where Rref and vref are drift-corrected
measurements [6,8] made at a reference amplitude, Aref �
0.0024, that is smaller than the threshold for any spatial
instability.

Each experimental run begins with the creation of uni-
directional TW of small amplitude by injecting localized
disturbances and suppressing TW that propagate in the
undesired direction [10]. Linear dispersion turns the re-
maining TW into a spatially uniform, unidirectional state
in about 10 hours. During this evolution, we apply spa-
tially uniform feedback so as to stabilize the TW ampli-
tude at As � Aref, using the control algorithm described in
[11]. This algorithm consists of periodically subtracting
from the Rayleigh number a correction equal to the sum
of two components, one proportional to the latest mea-
sured growth rate A21

m dAm�dt and one proportional to the
fractional amplitude error ln�Am�As�. This global feed-
back is applied during all measurements described in this
paper. Once the uniform state is stable, we measure the
wave number and amplitude profiles, Aref�x� and kref�x�,
for correction of small optical distortions in subsequent
measurements [8]. We then increase the set point As,
let the system settle, and make further measurements of
R�As�, A�x�, k�x�, and v�x�.

Previously [6], the nonlinear evolution of this uniform
state was studied by turning off the global feedback
control and increasing R to a constant value just above
onset. A transition to dispersive chaos via a characteristic
temporal burst and spatial collapse was observed. Under
the global control used here, a similar evolution is
seen, but it is triggered by a new instability of the
spatially uniform state to growing, propagating amplitude
modulations which appear when As is increased above
a threshold A1 � 0.0029. Figure 1 shows the growth of
this instability. In the first part of this run, made at As �
0.0030, the initially uniform amplitude profile develops
diagonal stripes of increasing contrast, characteristic of
the growth of the lowest spatial Fourier mode. When
As is increased to 0.0035, the modulation growth rate
increases. In the last �15 hours of this run, when the
modulations have grown to high amplitude, they become
spatially and temporally nonuniform. The subsequent
evolution of the system is erratic and exhibits many of
the hallmarks of dispersive chaos without feedback.

Figure 2 shows the dependence on As of the growth
rate g1 and the frequency v1 of the amplitude modula-
tions produced by this instability. The zero crossing of
g1 defines the instability threshold A1 � 0.00287�4�. The
modulation frequency v1 � 0.0497�4� is independent of

FIG. 1 (color). False-color, space-time representation of the
TW amplitude in an initially spatially uniform state of right-
going TW, illustrating the growth of propagating amplitude
modulations. The color sequence dark blue–light blue–green–
yellow–red encodes increasing TW amplitude. Initially, the set
point As was set to 0.0030, just above the instability threshold
A1, and diagonal stripes of increasing modulation depth reveal
the growth of the instability. At time t � 15 h, As was further
increased to 0.0035, accelerating the growth of the modulations
and leading to spatial and temporal variations in their strength.
731
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FIG. 2. The dimensionless growth rate (a) and frequency
(b) of modulations of the amplitude profile with no spatial
feedback are plotted as functions of the set point As. Above
As � A1 � 0.00287�4�, TWs controlled with global feedback
alone are unstable and require spatial feedback for stability.

As. For comparison, the phase velocity of the underlying
TW corresponds to a frequency of 0.072.

We damp these modulations by adding a spatially vary-
ing stress-parameter component D´1�x� � 2x1 ln�A�x 1

dxd��As� to the spatially uniform stress parameter ´�As�.
Here, x1 . 0 is a gain, and dxd ~ v1 is a spatial shift
set to match the drift of the amplitude modulation during
the time delay required to calculate and apply the spatial
feedback. For a range of x1, turning on this feedback
component rapidly eliminates amplitude modulations. As
As is increased, larger values of x1 are required for
stabilization.

The TW state controlled by this feedback algorithm
is stable up to amplitude A2 � 0.01080�2�. Above this
second threshold, propagating wave-number modulations
appear. To damp them, we add an additional spatial
feedback component D´2�x� � x2≠xk�x 1 dxd�. As be-
fore, x2 . 0, and a spatial shift compensates for propaga-
732
tion delay. Adding this feedback component to ´�As� 1

D´1�x� causes wave-number modulations to decay slowly.
Again, stabilization at larger amplitudes requires larger
gains. The heuristic reason for this choice of feedback al-
gorithm is that, in all nonlinear TW states in binary-fluid
convection, the TW phase velocity decreases with increas-
ing Rayleigh number [8]. Thus, since gradients of wave
number and of phase velocity are equivalent, they are re-
duced by feedback proportional to ≠xk�x�.

Above As � 0.013, we observe that the wave number
profile in the controlled state develops a static distortion
whose magnitude grows with increasing As. When k�x�
is sufficiently distorted, the coupling between wave num-
ber variations and the amplitude growth rate described by
Kaplan et al. [12] causes the system to become disper-
sively unstable and impossible to control. This behavior
is due to an increasing sensitivity of the wave number
profile to small spatial variations in the amplitude profile.
These in turn are due to imprecision in the reference pro-
file Aref�x� measured at low amplitude before the applica-
tion of spatial feedback. By making small modifications
to Aref�x�, using algorithms to be described in a subse-
quent publication, we can eliminate the wave number dis-
tortions that destabilize the system. This allows control
of TW up to amplitudes much higher than the second in-
stability threshold A2. It is important to point out that the
sensitivity of k�x� to A�x� is so great that the modifica-
tions imposed on Aref�x� are small—comparable to the
precision with which A�x� is computed in the first place.
Also, the spatial variation in the Rayleigh-number profile
required for stability is only �2 4� 3 1024 for all the data
discussed in this paper. Thus, we are indeed stabilizing
uniform TW states with spatial feedback of infinitesimal
magnitude. We have also verified that the controlled state
loses stability when the control is turned off.

Figure 3 shows measurements of ´�As� and Dv�As� for
unidirectional TW states controlled with spatial feedback.
As shown in Fig. 3(a), the closed feedback loop has
allowed us to trace the subcritical open-loop bifurcation
diagram up to amplitudes much higher than the thresholds
of the two secondary instabilities, which are indicated
by horizontal lines. Figure 3(b) shows the amplitude
dependence of the oscillation frequency. These data are
consistent with the predictions of a quintic, complex
Ginzburg-Landau equation (CGLE):
t0�≠t 1 s≠x�A � ´�1 1 ic0�A 1 j2
0�1 1 ic1�≠2

xA 1 g�1 1 ic2� jAj2A 1 h�1 1 ic4� jAj4A . (1)
Substituting A�x, t� � Asei�Dvt2Dkx� into Eq. (1) and
dropping terms that are independent of As give

´ 1 gA2
s 1 hA4

s � 0 , (2a)
t0Dv � c2gA2

s 1 c4hA4
s . (2b)

Fitting the amplitude dependences shown in Fig. 3 to
Eqs. (2a) and (2b) yields g � 13.2 6 0.5, t

21
0 c2g �

2754 6 36, h � �27.1 6 1.1� 3 103, and t
21
0 c4h �
�2.1 6 1.1� 3 105 [13]. These values have been substi-
tuted into Eqs. (2a) and (2b) to produce the solid curves
in Figs. 3(a) and 3(b). The cubic coefficients derived
from these fits are consistent with the less-precise val-
ues obtained from the analysis of onset transients de-
scribed in Ref. [6]: With t

21
0 � 9.81 6 0.19 [6], we

obtain a nonlinear frequency-renormalization coefficient
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FIG. 3. (a) The stress parameter ´�As� in controlled, uniform
TW states is plotted against the set point As, with the axes
interchanged so as to produce a bifurcation diagram. The
subscript s has been dropped to emphasize the point that
this is an open-look bifurcation diagram that has been traced
in closed loop. The data have been shifted slightly to give
´�As ! 0� ! 0. The long- and short-dashed lines show the
instability thresholds A1 and A2, respectively. These amplitude
thresholds correspond to ´1 � 20.00011 and ´2 � 20.00144.
The curve is a fit to the solution of the CGLE given in Eq. (2a).
(b) The oscillation frequency Dv�As� is plotted against As.
Again, the data are shifted to give Dv�As ! 0� ! 0; the actual
oscillation frequency at zero amplitude is 3.14. The curve is a
fit of the form given in Eq. (2b).

c2 � 25.82 6 0.37, consistent with the value 27.5 6

3.2 reported previously [6]. With c1 � 0.0079�33� [6],
we obtain 1 1 c1c2 � 0.954�19�. The analyses presented
in Refs. [6,12] yielded rather imprecise values for the
cubic coefficients in the CGLE and are certainly unable to
determine the quintic coefficients at all. The measurement
of these coefficients has relied crucially on the ability to
stabilize uniform TW using spatial feedback.

In summary, we have stabilized states of uniform,
unidirectional TW in a dispersively unstable regime of
binary-fluid convection by applying a spatially varying
Rayleigh-number profile computed from measurements
of the TW amplitude and wave number profiles. This
represents an important demonstration that such feedback
can be used to suppress erratic behavior in a spatially
extended system. This control has allowed us to make
accurate measurements of the nonlinear coefficients of the
equation that describes the dynamics of this system.

I. G. K. acknowledges support from the National Sci-
ence Foundation. G. F. gratefully acknowledges the fi-
nancial support of the Deutsche Forschungsgemeinschaft.

[1] E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64,
1196 (1990).

[2] T. Shinbrot, Adv. Phys. 44, 73 (1995).
[3] N. Parekh, S. Parthasarathy, and S. Sinha, Phys. Rev. Lett.

81, 1401 (1998), and references therein.
[4] M. E. Bleich, D. Hochheiser, J. V. Moloney, and J. E. S.

Socolar, Phys. Rev. E 55, 2119 (1997).
[5] F. Qin, E. E. Wolf, and H.-C. Chang, Phys. Rev. Lett. 72,

1459 (1994).
[6] P. Kolodner, S. Slimani, N. Aubry, and R. Lima, Physica

(Amsterdam) D85, 165 (1995).
[7] L. Howle, Int. J. Heat Mass Transf. 40, 817 (1997); Phys.

Fluids 9, 1861 (1997); J. Tang and H. H. Bau, J. Fluid
Mech. 363, 153 (1998).

[8] P. Kolodner, Phys. Rev. A 46, 6431 (1992).
[9] P. Kolodner, H. Williams, and C. Moe, J. Chem. Phys. 88,

6512 (1988).
[10] P. Kolodner, Phys. Rev. A 44, 6448 (1991); 44, 6466

(1991).
[11] P. Kolodner and H. Williams, in Proceedings of the NATO

Advanced Research Workshop on Nonlinear Evolution
of Spatio-temporal Structures in Dissipative Continuous
Systems, edited by F. H. Busse and L. Kramer, NATO
Advanced Study Institutes, Series B2, Vol. 225 (Plenum,
New York, 1990), p. 73.

[12] E. Kaplan, E. Kuznetsov, and V. Steinberg, Europhys.
Lett. 28, 237 (1994); Phys. Rev. E 50, 3712 (1994).

[13] In both cases, dropping the quartic term results in a clearly
bad fit. Neither fit is improved significantly if higher-
order terms are included.
733


