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We report observations of stabilized traveling-wave (TW) convection in a regime in which the
uncontrolled system exhibits repeated, erratic growth and abrupt decay of spatially localized bursts of
TW. By applying as feedback a spatially varying Rayleigh-number profile computed from the measured
convection pattern, we suppress this behavior and stabilize states of unidirectional TW with spatially
uniform amplitude on the unstable branch of the subcritical bifurcation to convection. This allows us
to measure the nonlinear coefficients of the corresponding quintic complex Ginzburg-Landau equation.

PACS numbers: 47.20.Ky, 05.45.Gg, 47.54.+r, 47.62.+q

The work of Ott, Grebogi, and Yorke awakened interestber far onto an unstable TW branch which is born from
among physicists in using feedback to control unstabléhe quiescent state via a subcritical bifurcation. By trac-
dynamical behavior in systems which are chaotic in theng this unstable branch, we have accurately measured the
absence of control [1]. It is often possible to maintaincoefficients of the fifth-order complex Ginzburg-Landau
such systems in unstable but regular dynamical states gquation (CGLE) which describes the bifurcation. Related
making small changes to a global control parameter irtechniques have been used to stabilize the quiescent state
response to deviations of the measured dynamics frorabove the onset of steady convection in a pure fluid [7].
the target state [2]. However, extending such feedback The experimental system has previously been described
techniques to the control of erratic patterns in spatiallyin detail [8]. The convection cell is a long, narrow annu-
extended systems remains a difficult and open problenius, formed by a plastic disk and ring which are clamped
Computationally, there has been some success in applyirigetween a mirror-polished, silicon bottom plate and a
spatially varying feedback to control spatiotemporal chaosransparent, sapphire top plate. The annular channel has
in coupled-map lattices [3] and in continuum systemsheightd = 0.2597(2) cm, radial widthI"', = 2.074(3)d,

[4]. Experimentally, it is sometimes possible to reduceand mean circumferenc€, = 91.10(8)d. The cell is
erratic pattern dynamics to a chaotic single-channel signafilled with a 0.4 wt % solution of ethanol in water at mean
which can then be controlled using temporal chaos-contrdemperature 27.61C, with separation ratigy = —0.020,
techniques [5]. But full control of erratic patterns in Prandtl number P+ 5.92, and Lewis numbek = 0.0085

a spatially extended system, using spatially distributed9]. Wave numbers and frequencies are rendered nondi-
feedback, has yet to be demonstrated. mensional by scaling with the cell heigitand the vertical

In this paper, we describe experiments on a spatially exthermal diffusion timer, = 45.8 sec, respectively.
tended pattern-forming system in which erratic behavior The top plate of the convection cell is cooled by
has been suppressed by using spatially distributed feedemperature-controlled, circulating water, and the bottom
back. We study convection in a thin, horizontal layer of anplate is electrically heated by two systems. The main
ethanol-water mixture which is heated from below, in a pe-heater is a round, thin-film heater glued to the underside
riodic, quasi-one-dimensional geometry. The control paof the plate. To apply spatially varying Rayleigh-number
rameter is the Rayleigh numbRr which is proportional to  profiles, a second heating system is used, consisting of
the temperature different applied vertically across the fluik4 small resistors, pressed against the underside of the
layer, and we define a stress parameter (R — R.)/R.,  bottom plate in a ring just outside the footprint of the
whereR, is the threshold Rayleigh number for the onsetconvection cell. These trim heaters are connected in
of convection. In this system, the first instability is oscil- parallel with the main heater, and individually computer-
latory, and it triggers a subcritical bifurcation to a nonlin- controlled shunt resistors are used to adjust the fractional
ear state of traveling waves (TWSs). For the parameters giower dissipated in each. An arbitrary Rayleigh-number
the present experiments, the first nonlinear TW state segurofile—including one that is nominally uniform—can be
aboveRr. is known as “dispersive chaos” and is character-applied with a fractional azimuthal variation ¢f-2) X
ized by the repeated, erratic appearance and sudden cab™* rms, as measured using the pulse-drift technique
lapse of spatially localized bursts of TW [6]. By applying [10], and a temporal stability of2—5) X 1073 rms over
a spatially varying stress-parameter profile, computed fronime scales shorter than a day. Drifts over longer periods
real-time, spatially resolved measurements of the compleare removed as described below and previously [6,8].

TW amplitude, we have stabilized a state of unidirectional In this system, convection patterns can in general
TW with the spatially uniform amplitude and wave num- take the form of superpositions of clockwise- and
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counterclockwise-propagating TW, of the form
A(x)sinfk(x)x = w(x)t]. In the experiments described
here, the amplitude, wave number, and oscillation fre-
quency A(x), k(x), and w(x) vary only on spatial scales
much longer than 27 /k,, (the subscript m denotes the
spatial average of the measured profile). Near onset, the
typical oscillation period 7o = 27/ w,, is 90—100 sec.
The TW pattern is monitored using a shadowgraph system
and is recorded at 360 azimuthal locations by a circular
array of photodiodes that is sampled by two computers.
One computer, used only for independent quantitative
data acquisition when the dynamics have been verified to
be stable, samples the system at arate ~4/7.s for many
oscillation cycles. Complex demodulation of this signa
[11] is used to extract A(x) and k(x) with a precision
of =3% in A and +0.2% in k. All of the dynamical
states studied here consist of unidirectional TW with
mean wave number k,, = 2wN,/T'y = 3.035, where
N, = 44 is the quantized number of wavelengths filling
the convection cell. For unidirectional TW, temporal
demodulation of the time series at severa spatial points
yields the oscillation frequency w,, with a fractiona
precision of ~1 X 1074, A second computer, dedicated
to fast control of the system, samples the camera signals
for short periods at regular intervals and uses a simplified
demodulation program to extract A(x) and k(x) inasingle
tempora oscillation cycle. These profiles are used to
compute the feedback Rayleigh-number profile applied to
the convection cell.

The set point that is varied in these experiments
is the spatialy averaged TW amplitude, denoted Aj.
Control at a chosen value of A; causes the amplitude
and wave number profiles to become spatially uniform,
with values A,, = A, and k,, = 3.035, respectively, the
TW frequency to settle to a spatidly uniform vaue
w,(Ay), and the Rayleigh number to setting to a value
R(A,). From the measured quantities R(A,) and w,,(Ay),
we compute S(As) = [R(As) - Rref]/Rref and Aw(As) =
wn(Ay) — wer, Where R and wys are drift-corrected
measurements [6,8] made at a reference amplitude, A =
0.0024, that is smaller than the threshold for any spatial
instability.

Each experimental run begins with the creation of uni-
directional TW of small amplitude by injecting localized
disturbances and suppressing TW that propagate in the
undesired direction [10]. Linear dispersion turns the re-
maining TW into a spatially uniform, unidirectional state
in about 10 hours. During this evolution, we apply spa-
tially uniform feedback so as to stabilize the TW ampli-
tudeat A; = A, using the control algorithm described in
[11]. This agorithm consists of periodically subtracting
from the Rayleigh number a correction equal to the sum
of two components, one proportional to the latest mea-
sured growth rate A, ' dA,, /dt and one proportiona to the
fractional amplitude error In(A,,/A;). This global feed-
back is applied during all measurements described in this

paper. Once the uniform state is stable, we measure the
wave number and amplitude profiles, Arer(x) and kees(x),
for correction of small optical distortions in subsequent
measurements [8]. We then increase the set point Ay,
let the system settle, and make further measurements of
R(Ay), A(x), k(x), and w(x).

Previoudly [6], the nonlinear evolution of this uniform
state was studied by turning off the globa feedback
control and increasing R to a constant value just above
onset. A transition to dispersive chaos via a characteristic
temporal burst and spatial collapse was observed. Under
the global control used here, a similar evolution is
seen, but it is triggered by a new instability of the
spatialy uniform state to growing, propagating amplitude
modulations which appear when Ay is increased above
athreshold A; ~ 0.0029. Figure 1 shows the growth of
thisinstability. In the first part of thisrun, made at A, =
0.0030, the initially uniform amplitude profile develops
diagona stripes of increasing contrast, characteristic of
the growth of the lowest spatial Fourier mode. When
Ay is increased to 0.0035, the modulation growth rate
increases. In the last ~15 hours of this run, when the
modulations have grown to high amplitude, they become
spatialy and temporally nonuniform. The subsequent
evolution of the system is erratic and exhibits many of
the hallmarks of dispersive chaos without feedback.

Figure 2 shows the dependence on A of the growth
rate y; and the frequency w; of the amplitude modula
tions produced by this instability. The zero crossing of
v1 defines the instability threshold A; = 0.00287(4). The
modulation frequency w; = 0.0497(4) is independent of
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FIG. 1 (color). False-color, space-time representation of the
TW amplitude in an initidly spatially uniform state of right-
going TW, illustrating the growth of propagating amplitude
modulations. The color sequence dark blue—light blue—green—
yellow—red encodes increasing TW amplitude. Initially, the set
point A, was set to 0.0030, just above the instability threshold
Ay, and diagonal stripes of increasing modulation depth reveal
the growth of the instability. Attime s = 15 h, A, was further
increased to 0.0035, accelerating the growth of the modulations
and leading to spatial and temporal variations in their strength.
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FIG. 2. The dimensionless growth rate (a) and frequency
(b) of modulations of the amplitude profile with no spatia
feedback are plotted as functions of the set point A;. Above
Ay = A; = 0.00287(4), TWs controlled with global feedback
aone are unstable and require spatial feedback for stability.

A;. For comparison, the phase velocity of the underlying
TW corresponds to a frequency of 0.072.

We damp these modulations by adding a spatially vary-
ing stress-parameter component Ag;(x) = — y1 In[A(x +
dx4)/A] to the spatially uniform stress parameter s(A;).
Here, y; > 0 isagain, and 6x; « w; is a spatial shift
set to match the drift of the amplitude modulation during
the time delay required to calculate and apply the spatia
feedback. For a range of y;, turning on this feedback
component rapidly eliminates amplitude modulations. As
A is increased, larger values of y; are required for
stabilization.

The TW state controlled by this feedback agorithm
is stable up to amplitude A, = 0.01080(2). Above this
second threshold, propagating wave-number modulations
appear. To damp them, we add an additional spatia
feedback component Aes(x) = x20.k(x + dx,). Asbe
fore, x> > 0, and a spatial shift compensates for propaga-

70(0; + 59)A = &(l + ico)A + £5(1 + ic1)9*A + g(1 + ico) |APA + h(1 + icy) |AI*A.

tion delay. Adding this feedback component to e(A;) +
A g (x) causes wave-number modulationsto decay slowly.
Again, stabilization at larger amplitudes requires larger
gains. The heuristic reason for this choice of feedback al-
gorithm is that, in al nonlinear TW states in binary-fluid
convection, the TW phase vel ocity decreases with increas-
ing Rayleigh number [8]. Thus, since gradients of wave
number and of phase velocity are equivaent, they are re-
duced by feedback proportional to 9, k(x).

Above A; ~ 0.013, we observe that the wave number
profile in the controlled state develops a static distortion
whose magnitude grows with increasing A,. When k(x)
is sufficiently distorted, the coupling between wave num-
ber variations and the amplitude growth rate described by
Kaplan et al. [12] causes the system to become disper-
sively unstable and impossible to control. This behavior
is due to an increasing sensitivity of the wave number
profile to small spatial variations in the amplitude profile.
These in turn are due to imprecision in the reference pro-
file Arer(x) measured at low amplitude before the applica
tion of spatia feedback. By making small modifications
to As(x), using algorithms to be described in a subse-
guent publication, we can eliminate the wave number dis-
tortions that destabilize the system. This alows control
of TW up to amplitudes much higher than the second in-
stability threshold A,. It isimportant to point out that the
sensitivity of k(x) to A(x) is so great that the modifica
tions imposed on A.(x) are smal—comparable to the
precision with which A(x) is computed in the first place.
Also, the spatial variation in the Rayleigh-number profile
required for stability isonly (2-4) x 104 for al the data
discussed in this paper. Thus, we are indeed stabilizing
uniform TW states with spatia feedback of infinitesimal
magnitude. We have also verified that the controlled state
loses stability when the control is turned off.

Figure 3 shows measurements of ¢(A;) and Aw(Ay) for
unidirectional TW states controlled with spatial feedback.
As shown in Fig. 3(a), the closed feedback loop has
allowed us to trace the subcritical open-loop bifurcation
diagram up to amplitudes much higher than the thresholds
of the two secondary instabilities, which are indicated
by horizontal lines. Figure 3(b) shows the amplitude
dependence of the oscillation frequency. These data are
consistent with the predictions of a quintic, complex
Ginzburg-Landau equation (CGLE):

D)

Substituting A(x,7) = A ei@@=3%) into Eq. (1) and | (2.1 = 1.1) X 10 [13]. These values have been substi-

dropping terms that are independent of A; give
e+ gA> + hAY =0, (2a)
’T()A(l) = ngAg + C4hA?. (2b)
Fitting the amplitude dependences shown in Fig. 3 to
Egs. (28) and (2b) yields g = 13.2 = 0.5, 7 'cog =
754 + 36, h = (=7.1 = 1.1) X 103, and 7y 'csh =

732

tuted into Egs. (2a) and (2b) to produce the solid curves
in Figs. 3(a) and 3(b). The cubic coefficients derived
from these fits are consistent with the less-precise val-
ues obtained from the analysis of onset transients de-
scribed in Ref. [6]: With 7' = 9.81 = 0.19 [6], we
obtain a nonlinear frequency-renormalization coefficient
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FIG. 3. (a) The stress parameter £(A,) in controlled, uniform
TW states is plotted against the set point A, with the axes
interchanged so as to produce a bifurcation diagram. The
subscript s has been dropped to emphasize the point that
this is an open-look bifurcation diagram that has been traced
in closed loop. The data have been shifted dlightly to give
eg(A; — 0) — 0. The long- and short-dashed lines show the
instability thresholds A, and A,, respectively. These amplitude
thresholds correspond to e; = —0.00011 and &, = —0.00144.
The curve is afit to the solution of the CGLE given in Eq. (2a).
(b) The oscillation frequency Aw(Ay) is plotted against A,.
Again, the data are shifted to give Aw(A; — 0) — 0; the actua
oscillation frequency at zero amplitude is 3.14. The curveis a
fit of the form given in Eq. (2b).

¢y = —5.82 * 0.37, consistent with the vaue —7.5 =
3.2 reported previously [6]. With ¢; = 0.0079(33) [6],
weobtain1 + c¢jcx = 0.954(19). The analyses presented
in Refs. [6,12] yielded rather imprecise values for the
cubic coefficients in the CGLE and are certainly unable to
determine the quintic coefficients at all. The measurement
of these coefficients has relied crucially on the ability to
stabilize uniform TW using spatial feedback.

In summary, we have stabilized states of uniform,
unidirectional TW in a dispersively unstable regime of

binary-fluid convection by applying a spatially varying
Rayleigh-number profile computed from measurements
of the TW amplitude and wave number profiles. This
represents an important demonstration that such feedback
can be used to suppress erratic behavior in a spatialy
extended system. This control has alowed us to make
accurate measurements of the nonlinear coefficients of the
equation that describes the dynamics of this system.
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