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Systematic Analytical Approach to Correlation Functions of Resonances
in Quantum Chaotic Scattering
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We solve the problem of resonance statistics in systems with broken time-reversal invariance by
deriving the joint probability density of all resonances in the framework of a random matrix approach
and calculating explicitly alln-point correlation functions in the complex plane. As a by-product, we
establish the Ginibre-like statistics of resonances for many open channels. Our method is a combination
of Itzykson-Zuber integration and a variant of nonlinears model and can be applied when the use of
orthogonal polynomials is problematic.
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As is well known, universal statistical properties o
bound states in the regime of quantum chaos can be
scribed in the framework of the random matrix approa
[1]. The relevant methods adjusting random matrix d
scription to the case of resonance scattering in open qu
tum systems are very well known since the pioneerin
work by the Heidelberg group [2]; see the review [3] fo
a thorough discussion of recent developments.

One of the basic concepts in chaotic quantum scatter
is the notion of resonances. Resonances are long-liv
intermediate states to which bound states of a “close
system are converted due to coupling to continua. O
the formal level the resonances show up as poles
the M 3 M scattering matrixSab�E�. The dimension
of this matrix,M, equals the number of open channe
in a given interval of energies. The poles ofSab�E�
occur at complex energiesEk � Ek 2

i
2Gk , whereEk

is called the position andGk the width of the corre-
sponding resonance. Recent advances in computatio
techniques made available resonance patterns with h
accuracy for realistic models of atomic and molecul
chaotic systems [4], as well as for quantum billiards an
other models related to chaotic scattering [5].

In the framework of the random matrix approac
the S-matrix poles (resonances) are just the compl
eigenvalues of an effective random matrix Hamiltonia
Heff � H 2 iG. HereH is a random self-adjoint matrix
of a large dimensionN describing the statistical properties
of the closedcounterpart of the scattering system und
consideration. Depending on the presence or absenc
the time-reversal invarianceH has to be chosen as a rea
symmetric or complex Hermitian one, respectively [1,6
The N 3 N matrix G serves the purpose of describin
transitions from the states described byH to the outer
world via M open channels. It is related to theN 3 M
matrix W of transition amplitudes in the following way:
G � pWWy. Such a form ofG is actually dictated by
the requirement of theS-matrix unitarity and ensures tha
all S-matrix poles lie in the lower half-plane of complex
0031-9007�99�83(1)�65(4)$15.00
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energies, as required by causality. It is evident that t
rank of G is M. In practice, the most interesting cas
is that of few open channels:N ¿ M � 1. In this case
the width Gk of a typical resonance is comparable wit
the meanseparationD between neighboring resonance
along the real axis, and statistical properties of resonan
are expected to be universal [3].

Despite quite substantial efforts [3,7–9] our actu
knowledge ofS-matrix poles statistics for few-channe
scattering is still quite restricted. Among the facts e
tablished analytically beyond perturbation theory on
can mention (i) the density of joint distribution of al
resonances for the system with a single open cha
nel and Gaussian-distributed transition amplitudesW [7]
and (ii) the mean density ofS-matrix poles for arbitrary
M ø N [3,8], as well as forM � N [10].

At the same time, the most interesting and difficu
question of correlations between resonances in the co
plex plane resisted systematic analytical investigation
As an attempt to get an insight into the problem, a no
trivial integral relation satisfied by the lowest (two-point
correlation function of complex eigenvalues forG $ 0
was derived recently in [9]. Using that relation it turne
out to be possible to put forward a conjecture on th
analytic structure of the correlation functions for system
with broken time-reversal invariance. Unfortunately, th
above mentioned relation neither fixed the lowest corre
tion function in a unique way nor provided direct infor
mation on higher correlation functions.

The goal of the present paper is to develop a regu
analytical approach to the statistical properties of res
nances for systems with broken time-reversal invarian
To this end, we first derive the joint probability density o
all resonances for an arbitrary number of open chann
M. Then we reduce the problem of extracting then-point
correlation functions in the limitn,M-fixed, N ! ` to
averaging a certain product of2n determinants. Finally,
the latter is evaluated with a method combining a ma
ping to a fermionic version of a nonlinears model with
© 1999 The American Physical Society 65
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the Itzykson-Zuber integration. As a result, we prove the
validity of the conjecture put forward in [9].

We consider an ensemble of random N 3 N com-
plex matrices J � H 1 iG [11], where H is N 3 N ma-
trix taken from a Gaussian unitary ensemble (GUE) of
Hermitian matrices with the probability density P �H� ~

exp�2N
2 trH2� and G is a fixed non-negative one: G $ 0.

The probability density function in our ensemble can be
written in the form

P �J� ~ exp

"
2
N
2

tr

√
J 1 Jy

2

!2#
d

√
G 2

J 2 Jy

2i

!
.

(1)

Here and henceforth we do not specify the multiplicative
constants when dealing with probability densities and
correlation functions since they can always be found from
the normalization condition.

Equation (1) can be used to obtain the density of
joint distribution of eigenvalues by integrating P �J� over
the degrees of freedom that are complementary to the
eigenvalues of J. This can be done following Dyson’s
method (see [6,12]). Neglecting matrices with repeated
eigenvalues, one transforms J to triangular form: J �
U�Z 1 R�Uy, where U is a unitary matrix, R is strictly
upper triangular, and Z � diag�z1, . . . , zN � is the diago-
nal matrix of complex eigenvalues. The Jacobian of
the transformation from J to �Z,U,R� is jD�Z�j2 where
D�Z� �

Q
1#j,k#N �zj 2 zk� is the Vandermonde deter-

minant. To perform the integration over R it is technically
convenient to use a Fourier-integral representation for the
d function in Eq. (1). This reduces the corresponding in-
tegral to a Gaussian one and after algebraic manipulations
the resulting expression is

PN ,G�Z� ~ e2�N�2� Re trZ22�N�2� trG2

jD�Z�j2Q�ImZ� , (2)

where Q�ImZ� is the remaining integral

Q�ImZ� �
Z

�dU�
NY
l�1

d�Imzl 2 �UyGU�ll� , (3)

over the unitary group U�N�, �dU� being the Haar
measure. Because of the specific structure of the matrices
J their eigenvalues lie in the upper part of the complex
plane and in all formulas below Imzj $ 0 for all j [11].

To proceed further we need to integrate over U. Again
it is convenient to use the Fourier-integral representation
for the d functions in Eq. (3),

Q�ImZ� �
Z dK

�2p�N
ei Im trKZ

Z
�dU�e2i trKUyGU , (4)

where the first integration is over all real diagonal
matrices K of dimension N , dK being dk1 · · · dkN .

When the eigenvalues of G are all distinct, the in-
tegration over U can be performed using the famous
Itzykson-Zuber-Harish-Chandra (IZHC) formula [13].
We, however, are mostly interested in the case when G

has a small rank M ø N; i.e., it has only M nonzero
66
eigenvalues which we denote by g1, . . . , gM . This limit
of highly degenerate eigenvalues is difficult to perform in
the original IZHC formula. Nevertheless, the difficulty
can be circumvented and the result is as follows:

Q�ImZ� �
detM2N g

D�g�

Z
RM
dL det�e2igllm �Ml,m�1

3 D�L�
NY
j�1

MX
m�1

eilm ImzjQ
sfim�lm 2 ls�

, (5)

where L � diag�l1, . . . , lM� and g � diag�g1, . . . , gM�.
Equations (2) and (5) give an explicit representation

for the joint probability density of N resonances zi in
the complex plane. As such, they constitute one of the
main results of the present paper and provide the basis for
calculating the n-eigenvalue correlation functions

Rn�z� �
N!

�N 2 n�!

Z
dwPN ,G�z, w� , (6)

where, for the sake of brevity, we decompose Z �
diag�z, w� with z � �z1, . . . , zn� and w � �w1, . . . ,wN2n�,
dw �

QN2n
j�1 d Rewjd Imwj , identifying wk 	 zn1k .

In what follows we will calculate Rn�z� for arbitrary
fixed n and M in the limit N ! `. On the first stage we
will replace the integration over w in (6) by averaging
over the ensemble of non-Hermitian random matrices
JN2n�g� � HN2n 1 iG, with HN2n being a GUE matrix
of the reduced size �N 2 n� 3 �N 2 n�. This step
involves cumbersome algebraic manipulations and will
be presented in full details elsewhere. Here we outline
the ideas on the simplest, still nontrivial example of one-
channel systems (M � 1). In this case G has only one
nonzero eigenvalue g and the l integration in Eq. (5) can
be explicitly performed yielding

PN ,g�Z� ~
jD�Z�j2

gN21 e2�N�2� �Re trZ21g2�d

√
g 2

NX
j�1

Imzj

!
.

(7)

Introducing the notation g̃ � g 2
Pn
j�1 Imzj , we write

the d function in Eq. (7) as d�g̃ 2
PN2n
l�1 Imwl�. Now

we replace N in the exponent of Eq. (7) by N 2 n (this
act is justified by the limit N ! `). With the resulting
relation in hand one readily obtains that

Rn�z� ~
Cg̃�z�

gn
jD�z�j2e2��N2n��2�

Pn

j�1
Rez2

j

3

"
g̃

g

#N2n21

e2��N2n��2� �g22g̃2�, (8)

where

Cg̃�z� �
Z

dwPN2n,g̃�w�
N2nY
l�1

nY
j�1

jzj 2 wlj
2

�

*
nY
j�1

j det�zj 2 JN2n�g̃��j2
+

GUE

. (9)
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In the limit when N ! ` and M is finite (in particular,
for the present case M � 1), the imaginary part of almost
all eigenvalues of J is of the order 1

N ø gm [14],
hence so is g̃ 2 g. Therefore one can reinstate g in place
of g̃ in the determinants in Eq. (9). On the other hand,
rescaling the imaginary parts yj � N Imzj , one finds that"

g̃

g

#N2n21

e2��N2n��2� �g22g̃2� � e
22

Pn

j�1
yjg

in the limit n ø N ! `, with g �
1
2 �g 1 g21�.

Essentially similar manipulations can be performed for
an arbitrary fixed number of open channels M. In the
limit n,M ø N ! ` we arrive at the following general
representation of the correlation functions:

Rn�z� ~
Cg̃�z�
detng̃

jD�z�j2e2��N2n��2�
Pn

j�1
Rez2

j

3

nY
j�1

MX
m�1

e22yjgmQ
sfim�gm 2 gs�

, (10)

where gm � 1
2 �gm 1 g21

m �.
Thus, the problem amounts to evaluation of the correla-

tion function of the determinants in Eq. (9) [15]. To pro-
ceed, we first write each of the determinants as a Gaussian
integral over a set of Grassmann variables. When this is
done, the GUE average becomes trivial and yields terms
quartic with respect to the Grassmannians. These terms
can be further traded for an auxiliary integration over a
Hermitian matrix S of the size 2n 3 2n (the so-called
Hubbard-Stratonovich transformation). Then the integra-
tion over the Grassmann fields is trivially performed and
yields again a determinant. As the result, we arrive at the
following expression:

Cg�z� ~
Z

�dS�e2�N2n� tr��1�2�S22ln��2n2iS��

3

MY
m�1

det�'2n 1 igm� 2n��2n 2 iS�21� , (11)

where we have introduced the diagonal matrices �2n �
diag�z, zy� and � 2n � diag�'n, 2'n�.

Let us now recall that nontrivial eigenvalue correla-
tions are expected to occur [12] on the scale when the
eigenvalues are separated by distances comparable with
the mean eigenvalue separation for GUE matrices H,
the latter being of the order �N 2 n�21 with our choice
of P �H�. Accordingly, it is convenient to separate the
“center of mass” coordinate x � 1

n

Pn
j�1 Rezj so that

zj � x 1
z̃j

N2n , where both the real and imaginary parts
of z̃j are of the order of 1 in the limit when N ! ` and
M is fixed. In this limit Rn�z� is effectively a function of
z̃ (x is fixed) which we are going to calculate.

To evaluate the integral in (11) let us first diagonal-
ize S: S � U2nSU

21
2n , where U2n [ U�2n� and S �

diag�s1, . . . , s2n�. Then, keeping only the leading terms
in the limit N ! `, we obtain

Cg �z� �
Z
dS D2�S�e2�N2n�

P2n

k�1
��s2

k�2�2ln�x2isk��

3 
C�S��U�2n� , (12)

where


C�S��U�2n� �
Z

�dU2n�e2tr��̃2n�x'2n2iS�21�

3

MY
m�1

det�'2n 1 igm�2n�x'2n 2 iS�21� .

The form of the integrand in (12) suggests exploiting
the saddle-point method in the integral over sk , k �
1, . . . , 2n. Altogether there are 22n saddle points: s

�s�
k �

2
i
2 �x 1 iek

p
4 2 x2 �, where ek � 61. The leading

order contribution comes from integration around those
saddle points where exactly n parameters ek equal 1 (the
rest being equal 21). All other choices can be neglected
as they lead to lower order terms. This is because of
the presence of the Vandermonde determinant in the
integrand. At the same time, all relevant saddle points
produce the same contribution and we obtain that

Cg�z� ~ e
��N2n��2�

Pn

j�1
Rez2

j Cs
g �z̃� , (13)

where z̃ � �z̃1, . . . , z̃n�, z̃j � N�zj 2 x�, j � 1, . . . , n,
and

Cs
g�z̃� �

Z
�d�2n�e2ipn�x� tr�̃2n�2n

3

MY
c�1

det

"
'2n 1

igcx
2

�2n

1 pn�x�gc�2n�2n

#
. (14)

In (14) �2n � U21
2n � 2nU2n, the integration is over the

coset space U�2n��U�n� ≠ U�n�, and the symbol n�x�
stands for the semicircular density of real eigenvalues of
the matrices H, n�x� �

1
2p

p
4 2 x2.

Thus, the problem reduces to evaluation of an integral
over a coset space. This type of integrals is known in the
literature under the name of zero-dimensional nonlinear s

models and our considerations enjoy many useful insights;
see, e.g., Ref. [16]. In particular, the following polar
parametrization proves to be the most effective:

�2n �

√
UA

UR

! √
cosĉ eif̂ sinĉ

e2if̂ sinĉ 2 cosĉ

!

3

√
U21
A

U21
R

!
,

where UA,R [ U�n�, ĉ � diag�c1, . . . , cn�, f̂ �
diag�f1, . . . , fn�, and 0 , fk, ck , 2p. The corre-
sponding measure �d�2n� is proportional to
67
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�dUA� �dUR�
nY
j�1

dfj dcj sin2cj 3

Y
1#l,k#n

j cos2cl 2 cos2ckj
2.

The use of such a parametrization makes the integration
especially simple because of the determinant factor being
independent of the unitary matrices UA,R . As a result,
these matrices appear only in the exponential factor and
the corresponding integrals can be evaluated according to
the IZHC formula [13]. Passing to the variables lk �
cos2ck we find

Cs
g�z̃� ~

detn g
jD�z̃�j2

Z 1

21

nY
j�1

dlj

nY
j�1

GM�lj�

3 det�e1ipn�x�z̃jlk � det�e2ipn�x�z̃�
jlk �

~
n! detn g
jD�z̃�j2

det

"Z 1

21
dlGM�l�eipn�x�l�z̃j2z̃�

k �

#
,

where

GM�l� �
MY
m�1

�gm 1 pn�x�l� .

Combining this with Eqs. (10) and (13) and restoring the
normalization we finally see that the correlation functions,
in the limit N ! `, have the following simple structure:

1
N2n Rn

√
x 1

z̃1

N
, . . . , x 1

z̃n
N

!
� det�K�z̃j , z̃�

k ��nj,k�1 ,

where the kernel K�z̃j , z̃�
k� is given by

K�z̃1, z̃�
2� � F1�2�z̃1�F1�2�z̃�

2�

3
Z 1

21
dl e2ipn�x�l�z̃12z̃

�
2 �GM�l� (15)

with F�z̃� �
PM
m�1

e22jImz̃jgmQ
sfim

�gm2gs�
. This is equivalent to the

form conjectured in [9].
One of the important physical limits of the scattering

system is the case of many equivalent open channels:
gm � g for all m and M ¿ g. Resonances in that case
form a dense cloud in the complex plane characterized
by a mean density r�z� inside the cloud. This fact and
expression for r�z� were found in [3,10]. Using our
formulas derived above we are able to show that the
statistics of the resonances in that case is determined by a
Ginibre-like kernel,

jK�z1, z2�j � r�z� exp 2
1
2

pr�z� jz1 2 z2j
2 (16)

with z � �z1 1 z2��2, generalizing a classical result by
Ginibre [17] to the case of a nonuniform (i.e., position-
dependent) mean density of complex eigenvalues r�z�.
68
As such, it has a good chance to be universally valid for
strongly non-Hermitian random matrices.

In conclusion, we considered a non-Hermitian random
matrix model of chaotic quantum scattering. We started
with deriving the joint probability density of all complex
eigenvalues describing S-matrix poles (resonances) in
chaotic systems with broken time-reversal invariance.
Then we found a way to extract all correlation functions
of the resonances in complex plane. As a by-product,
we established the Ginibre-like statistics of resonances for
many open channels.
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