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We investigate the concept of quantum secret sharing. In a�k, n� threshold scheme, a secret quantum
state is divided inton shares such that anyk of those shares can be used to reconstruct the secret,
any set ofk 2 1 or fewer shares contains absolutely no information about the secret. We show tha
only constraint on the existence of threshold schemes comes from the quantum “no-cloning theo
which requires thatn , 2k, and we give efficient constructions of all threshold schemes. We a
show that, fork # n , 2k 2 1, then any�k, n� threshold schememust distribute information that is
globally in a mixed state.

PACS numbers: 03.67.Dd, 03.67.–a
g
al-
an
e
for
te

ir
r

t in
of
or
e a

nal

at,
e
is

f
e
s.
d
e),
, to
Suppose that the president of a bank wants to g
access to a vault to three vice presidents who are
entirely trusted. Instead of giving the combination t
any one individual, it may be desirable to distribut
information in such a way that no vice president alon
has any knowledge of the combination, but any two
them can jointly determine the combination. In 197
Blakely [1] and Shamir [2] addressed a generalizatio
of this problem, by showing how to construct schem
that divide a secret inton shares such that anyk of those
shares can be used to reconstruct the secret, but any s
k 2 1 or fewer shares contains absolutely no informatio
about the secret. This is called a�k, n� threshold scheme,
and is a useful tool for cryptographic key management.

Now, consider a generalization to the setting ofquan-
tum information, where the secret is an arbitrary un
known quantum state. Salvail [3] (see also [4]) obtaine
a method to divide an unknown qubit into two share
each of which individually contains no information abou
the qubit, but which jointly can be used to reconstru
the qubit. Hillery et al. [4] and Karlssonet al. [5] pro-
posed methods for implementing someclassical thresh-
old schemes that use quantum information to transmit t
shares securely in the presence of eavesdroppers. Th
papers also considered the possibility of splitting quantu
information without keeping it completely secret.

Define aquantum �k, n� threshold scheme, with k # n,
as a method to encode and divide an arbitrarysecret quan-
tum state (which is given but not, in general, explicitl
known) into n shares with the following two properties.
First, from anyk or more shares, the secret quantum sta
can be perfectly reconstructed. Second, from anyk 2 1
or fewer shares, no informationat all can be deduced
about the secret quantum state. Each share can con
of any number of qubits (or higher-dimensional states
and not all shares need to be of the same size.

Quantum secret sharing schemes might be used
the context of sharing quantum keys, such as “quantu
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money” [6]. They can also be used to provide interestin
ways of distributing quantum entanglement and nonloc
ity. For example, suppose that Alice has one qubit of
EPR pair and a�2, 2� threshold scheme is applied to th
other qubit to produce a share for Bob and a share
Carol. Then Alice and Bob together have a product sta
(i.e., rAB � rA ≠ rB), as do Alice and Carol; however,
Bob and Carol can jointly construct a qubit from the
shares that is in an EPR state with Alice’s qubit. Also, fo
quantum storage or quantum computations to be robus
the worst-case situation where a component or a group
components fail (due to sabotage by malicious parties
due to defects), quantum secret sharing may prove to b
useful concept.

Let us begin with an example of a�2, 3� threshold
scheme. The secret here is an arbitrary three-dimensio
quantum state (a quantum trit orqutrit). The encoding
maps the secret qutrit to three qutrits as

aj0� 1 bj1� 1 gj2� � a�j000� 1 j111� 1 j222��

1 b�j012� 1 j120� 1 j201��

1 g�j021� 1 j102� 1 j210�� , (1)

and each resulting qutrit is taken as a share. Note th
from a single share, absolutely no information can b
deduced about the secret, since each individual share
always in the totally mixed state (an equal mixture o
j0�, j1�, and j2�). On the other hand, the secret can b
reconstructed from any two of the three shares as follow
If we are given the first two shares (for instance), ad
the value of the first share to the second (modulo thre
and then add the value of the second share to the first
obtain the state

�aj0� 1 bj1� 1 gj2�� �j00� 1 j12� 1 j21�� . (2)

The first qutrit now contains the secret.
© 1999 The American Physical Society
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Note that the above example is similar to a quantum
error-correcting code [7,8]. In fact, it is a three-qutrit
quantum code that can correct one erasure error. Every
quantum secret sharing scheme is, in some sense, a
quantum error-correcting code; however, some error-
correcting codes are not secret sharing schemes, since they
may contain sets of shares from which partial information
about the secret can be obtained. For example, consider
a four-qubit code [9,10] that corrects one erasure by the
encoding

aj0� 1 bj1� � a�j0000� 1 j1111��

1 b�j0011� 1 j1100�� .

While it is true that any three qubits suffice to reconstruct
the secret, it is not true that two qubits provide no
information. For instance, given the first and third qubits,
one can distinguish between the secrets j0� and j1�. Later,
we shall show how to obtain a �3, 4� threshold scheme
with four qubits using a different approach.

Returning to the �2, 3� threshold scheme using qutrits,
note that it can be used to share a secret that is a qubit
by simply not using the third dimension of the input space
(though the resulting shares are still full qutrits). It turns
out that there does not exist a �2, 3� threshold scheme
for qubits in which each share is also a qubit. This is
because such a scheme would also be a three-qubit code
that corrects single qubit erasure errors, which has been
shown not to exist [10].

The �2, 3� qutrit threshold scheme can be used to
construct a �2, 2� threshold scheme, by simply discarding
(i.e., tracing out) one of the three shares. Note that the
resulting �2, 2� scheme produces a mixed state encoding
even when the secret is a pure state. Call a scheme that
encodes pure state secrets using global pure states a pure
state scheme, and a scheme for which the encodings of
pure states are sometimes in global mixed states a mixed
state scheme. We shall show later that there does not exist
a pure state �2, 2� threshold scheme.

On the other hand, if we do not insist on protecting an
arbitrary secret, we could use the encoding

aj0� 1 bj1� � a�j00� 2 j11�� 1 b�j01� 1 j10�� . (3)

For the restricted set of secrets where a ? b� is real val-
ued, it functions as a �2, 2� threshold scheme. However,
without this restriction, this is not a secret sharing scheme,
since (for example) it can be verified that a single share
can completely distinguish between the secrets j0� 1 ij1�
and j0� 2 ij1�. Although such a scheme may be useful
in some contexts, we shall henceforth consider only “un-
restricted” secret sharing schemes.

Note that the previously mentioned technique of dis-
carding a share from a �2, 3� threshold scheme to obtain a
�2, 2� threshold scheme (suggested by [11] in the context
of a different scheme) generalizes considerably.
Theorem 1.—From any �k, n� threshold scheme with
n . k, a �k, n 2 1� threshold scheme can be constructed
by discarding one share.

In the classical case, a �k, n� threshold scheme exists for
every value of n $ k. However, this does not hold in the
quantum case, due to the “no-cloning theorem” [12,13].

Theorem 2.—If n $ 2k then no �k, n� threshold
scheme exists.

Proof.—If a �k, n� threshold scheme exists with n $

2k then the following procedure can be used to make two
independent copies of an arbitrary quantum state (that is,
to clone). First, apply the �k, n� scheme to the state to
produce n shares. Then, taking two disjoint sets of k
shares, reconstruct two independent copies of the state.
This contradicts the no-cloning theorem [12,13].

The five-qubit quantum code proposed in [14,15] im-
mediately yields a �3, 5� threshold scheme. First, since it
corrects any two erasure errors, it enables the secret to
be reconstructed from any three shares. Also, any pair of
qubits provides no information about the data. This is a
consequence of the following more general theorem.

Theorem 3.—If a quantum code with code words of
length 2k 2 1 corrects k 2 1 erasure errors (which,
for stabilizer codes [16,17], is a ����2k 2 1, 1, k����q code,
where q is the dimensionality of each coordinate and of
the encoded state) then it is also a �k, 2k 2 1� threshold
scheme.

Proof.—First, suppose that we are given a set of k
shares. Since this set excludes precisely k 2 1 shares
and the code corrects any k 2 1 erasures, the secret can
be reconstructed from these k shares. On the other hand,
suppose that we are given a set of k 2 1 shares. This
subset excludes a set of k shares, from which we know
that the secret can be perfectly reconstructed. Now, in
quantum mechanics, it is well known that any information
gain on an unknown quantum state necessarily leads
to its disturbance [18]. Therefore, if a measurement
on the given k 2 1 shares provided any information
about the secret, then this measurement would disturb the
information that the remaining k qubits contain about the
secret. This leads to a contradiction.

Combining Theorem 3 with Theorem 1, we obtain the
following.

Corollary 4.—If a ����2k 2 1, 1, k����q code exists, a
�k, n� threshold scheme exists for any n , 2k.

For example, from the aforementioned five-qubit code,
a �3, 4� threshold scheme and �3, 3� threshold scheme can
be obtained (by discarding shares).

Next, we prove the converse of Theorem 2.
Theorem 5.—If n , 2k, then a �k, n� threshold scheme

exists. Moreover, the dimension of each share can be
bounded above by 2 max�2k 2 1, s�, where s is the
dimension of the quantum secret.

Proof.—We will use a class of quantum polynomial
codes, which are based on those defined by Aharonov
and Ben-Or [19] in the context of fault-tolerant quantum
649
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computation. Our goal is to show how to construct such
a code of length m and degree k 2 1 whenever m , 2k,
and that the data that it encodes can always be recovered
from any k of its m coordinates. Then, considering the
special case where m � 2k 2 1, we obtain a ����2k 2

1, 1, k����q code, for which Corollary 4 applies to prove the
theorem.

Let k and m be given with m , 2k, and let s be the
dimension of the quantum state to be encoded. Choose a
prime q such that max�m, s� # q # 2 max�m, s� (which
is always possible [20]) and let F � Zq. For c �
�c0, c1, . . . , ck21� [ Fk , define the polynomial pc�t� �
c0 1 c1t 1 · · · 1 ck21tk21. Let x0, . . . , xm21 be m dis-
tinct elements of F. Encode a q-ary quantum state by the
linear mapping which is defined on basis states js� (for
s [ F) as

js� �
X

c[Fk

ck21�s

jpc�x0�, . . . , pc�xm21�� . (4)

As an example, it turns out that mapping (1) [for the
�2, 3� threshold scheme] is a quantum polynomial code
with k � 2, m � 3, and q � 3.

It now suffices to show that, given an encoding (4) of
a quantum state, the state can be recovered from any k of
the m coordinates. One way to show this is to apply the
theory of Calderbank-Shor-Steane codes [21,22], noting
that this code is formed from the two classical codes

C1 � ����pc�x0�, . . . , pc�xm21���� j c [ Fk� , (5)

C2 � ����pc�x0�, . . . , pc�xm21���� j c [ Fk , ck21 � 0� ,

(6)

and that min�distC1, distC�
2 � � m 2 k 1 1. From this it

follows that the code corrects m 2 k erasure errors.
For completeness, we also give an explicit decoding

procedure for the case of interest, where m � 2k 2 1.
We begin with some preliminary definitions. For an
invertible d 3 d matrix M, define the operation apply
M to a sequence of d quantum registers as applying the
mapping

j� y0, . . . , yd21�� � j� y0, . . . , yd21�M� . (7)

For z0, . . . , zd21 [ F, define the d 3 d Van-
dermonde matrix �Vd�z0, . . . , zd21��ij � zi

j (for
i, j [ �0, . . . , d 2 1�). Also, note that applying
Vd�z0, . . . , zd21� to registers in state jc0, . . . , cd21� yields
the state jpc�z0�, . . . , pc�zd21��, where c � �c0, . . . , cd21�.

The secret can be recovered from any k coordi-
nates by the following procedure. Call the m registers
containing the coordinates R0, . . . , Rm21, and sup-
pose that we are given, say, the first k registers (that
is, R0, . . . , Rk21). (i) Apply Vk�x0, . . . , xk21�21 to
R0, . . . , Rk21. (ii) Cyclically shift the first k registers
650
by one to the right by setting �R0, R1, . . . , Rk21� to
�Rk21, R0, . . . , Rk22�. (iii) Apply Vk21�xk , . . . , xm21�
to R1, . . . , Rk21. (iv) For all i [ �1, . . . , k 2 1�, add
R0 ? �xk1i21�k21 to Ri .

Consider an execution of the above procedure on a state
resulting from the encoding Eq. (4) on a basis state js�.
After steps (i) and (ii), the state of the n registers is

X

c[Fk

ck21�s

jck21, c0, . . . , ck22� jpc�xk�, . . . , pc�xm21��

� js�
X

c[Fk

ck21�s

jc0, . . . , ck22� jpc�xk�, . . . , pc�xm21�� .

(8)

If the datum is a basis state js� (for some s [ F), its
recovery is already complete. However, for a general
secret, which is a superposition of js� states, register R0 is
entangled with the other registers. This is because, in (8),
the value of s can be determined by the value of any of the
kets jc0, . . . , ck22� jpc�xk�, . . . , pc�xm21��. The remaining
steps complete the decoding.

After steps (iii) and (iv), the state is

js�
X

c[Fk

ck21�s

jpc�xk�, . . . , pc�xm21�� jpc�xk�, . . . , pc�xm21��

� js�
X

y[Fk21

jy1, . . . , yk21� jy1, . . . , yk21� , (9)

where we use the fact that, for any s [ F
and y1, . . . , yk21 [ F, there is a unique c [ Fk

with ck21 � s such that pc�xk1i21� � yi , for all
i [ �1, . . . , k 2 1�. The decoding procedure is now
correct for arbitrary data.

Although we have focused on threshold schemes, it is
possible to consider more general access structures. In
a general quantum secret sharing scheme, from certain
authorized sets of shares, the secret can be reconstructed,
while, from all other sets of shares, no information can
be obtained about the secret. For example, consider a
scenario with three shares, A, B, C, where the authorized
sets are �A, B�, �A, C�, and any superset of one of these
sets. Such an access structure can be easily implemented
by starting with the �3, 4� threshold scheme and bundling
the first two shares into the share A.

We have already seen relationships between quan-
tum secret sharing schemes and quantum error-correcting
codes. We now explore this connection more deeply.

The usual formulation of conditions for a quantum
error-correcting code yields the following.

Proposition 6.—Let C be a subspace of a Hilbert
space H . The following conditions are equivalent.

(a) C corrects erasures on a set K of coordinates.
(b) For any orthonormal basis �jfi�� of C ,

	fijEjfj� � 0 �i fi j� , (10)
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	fijEjfi� � c�E� , (11)

for all operators E acting on K .
(c) For all (normalized) jf� [ C and all E acting

on K ,

	fjEjf� � c�E� . (12)

Note that the same function c�E� appears in conditions
(b) and (c), and that it is independent of jf� or jfi�.

Proof.—�a� , �b� is essentially the standard quantum
error correction conditions [14,23] applied to erasure
errors [10]. �b� , �c� is straightforward. Alternately,
�a� , �c� follows from the main theorem of [24].

Equation (10) says that, in correcting errors, we will
never confuse two different basis vectors. Equation (11)
says that learning about the error will never give us any
information about which basis vector we have.

On the other hand, condition (12) simply says that
the environment can never gain any information about
the state. In other words, the proposition tells us that
protecting a state from noise is exactly the same as
preventing the environment from learning about it.

Condition (12) is also very convenient for our purposes,
since the two constraints that arise on a quantum secret
sharing scheme are the ability to correct erasures and the
requirement that no information be gained by unautho-
rized sets of shares.

Theorem 7.—An encoding f : jc� � jf� is a pure
state quantum secret sharing scheme iff Eq. (12) holds
(independent of jf�) whenever E is an operator acting
on the complement of an authorized set or when E is an
operator acting on an unauthorized set.

Proof.—Let C be the image of f. S is an authorized
set iff the subspace C can correct for erasures on K , the
complement of S. By Proposition 6, this means S is an
authorized set iff (12) holds for all E acting on K . T is
an unauthorized set whenever we can gain no information
about the state jc� from any measurement on T . That is,
the expectation value 	fjEjf� is independent of jf� [ C
for any operator E we could choose to measure, which
means it must act on T . Again, this is condition (12).

Theorem 7 has at least one remarkable consequence.
Corollary 8.—For a pure state quantum secret sharing

scheme, every unauthorized set of shares is the comple-
ment of an authorized set and vice versa.

Proof.—If the complement of an authorized set of
shares S1 were another authorized set S2 then we could
create two copies of the secret from S1 and S2, violating
the no-cloning theorem. Therefore, the complement of an
authorized set is always an unauthorized set.

On the other hand, by Proposition 6, if condition (12)
holds on an unauthorized set T , we can correct erasures on
T , and therefore reconstruct the secret on the complement
of T . Therefore, the complement of an unauthorized set
is always an authorized set.

For a pure state �k, n� threshold scheme, this condition
implies that n 2 k � k 2 1. Therefore,
Corollary 9.—Any �k, n� pure state threshold scheme
satisfies n � 2k 2 1.

Clearly, this corollary does not apply to mixed state
schemes, since we have constructed �k, n� threshold
schemes with n , 2k 2 1.
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