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We have examined electron screening at the surface of a ferromagnetic metal. In an applied electric
field, the surface develops an induced charge and magnetization. This can be described in terms of a
novel spin-dependent screening electric field. A set of integrodifferential equations for screening poten-
tials is derived and solved in some limiting cases. The significant implication relevant to spin-polarized
transport in field emission and in magnetic tunnel junctions is discussed.
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Electron screening in the surface of a nonmagnetic
metal in an externally applied field is well understood
[1,2]. A dc electric field penetrates only about a Thomas-
Fermi screening length into the metal. There develops
a surface buildup of electric charges which screen the
bulk of the metal from the applied field. For a ferro-
magnetic metal, screening charges at the surface might
well influence the surface magnetization. The impor-
tance of the exchange effect on electron screening in fer-
romagnets has already been shown by del Moral et al.
when they studied crystal-field magnetoelastic stress in
rare-earth compounds and superlattices [3]. In this Let-
ter, we model electric screening effects in a ferromagnet
by studying the dielectric response of its surface to an ap-
plied electric field. To properly account for charge and
magnetization buildup, we found it very advantageous to
explicitly introduce an important new concept, which we
call the spin-dependent screening potential.

The spin dependence of the screening potential origi-
nates from the exchange interaction in ferromagnets.
When electron charges build up at the surface of the fer-
romagnet, they interact via Coulomb interactions which
depend on the total net charges and via ferromagnetic
exchange interactions which depend on the spin of the
screening charges, i.e., the spin up and down electrons
will have different potentials. These different potentials
can be interpreted as voltage absorbed by the ferromag-
net, or as spin-dependent electric field penetrating into the
ferromagnet. We should point out here that the concept
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of the spin dependence of potentials introduced here is
different from that of the spin accumulation in magnetic
multilayers [4]. In magnetic multilayers, spin accumula-
tion is proportional to electric current, i.e., it is a current
driven effect. Chui has extended this current driven spin
accumulation to magnetic tunnel junctions (MTJ) [5]. In
the present model, we consider the spin-dependent electric
field due to externally applied voltage, i.e., it is a voltage
driven effect. In the case of infinite tunnel resistance, the
spin accumulation due to the current driven effect is zero,
while the voltage driven effect remains. Furthermore, the
current driven spin accumulation leads to differences in
chemical potentials for spin up and down electrons while
the voltage driven magnetization results in spin-dependent
band bendings as we will show later. We should first con-
struct a set of general integrodifferential equations which
govern the charge and magnetization buildup at the sur-
face. The equations are then solved in some limiting
cases. In particular, we estimate the induced magnetic
moments by an applied electric field in Ni, Co, and Fe.

Consider an electric field applied normally to the surface
defined as the x � 0 plane. We introduce an induced
charge density dn�x� so that the total charge density is
n�x� � n0 1 dn�x� where n0 is the charge density in the
absence of the applied field. In a ferromagnet, let this
charge density be explicitly written as the sum of two
spin channels, i.e., n�x� � n"�x� 1 n#�x� where ns�x� �
ns

0 1 dns�x�. The induced charges interact via Coulomb
interactions and give rise to a Coulomb energy,
Wc �
e2

8pe0

Z �dn"�x� 1 dn#�x�� ? �dn"�x0� 1 dn#�x0��
jr 2 r0j

dr dr0. (1)
In a ferromagnetic metal, the induced charges are also
subjected to exchange interactions. While there are num-
bers of forms to express the exchange interactions, we
find it convenient to limit ourselves within the Stoner
rigid two-spin band model, i.e., spin up and down bands
are split by an exchange constant. Then the exchange
energy We can be expressed as We � �1�2�Heff ? dM,
where Heff is the internal exchange field in the ferromag-
net, dM � �dn" 2 dn#�mB is the induced magnetic mo-
ment, and mB is the Bohr magneton. While the detailed
determination of Heff is difficult, it is usually parametrized
as Heff � JM�m

2
B, where J is the order of the exchange

splitting of the spin-up and spin-down bands (which have
been estimated for Ni, Co, and Fe as will be discussed
later), and M � �n"�x� 2 n#�x��mB is the total magnetiza-
tion. With this parametrization, the exchange energy is

We � �J�2� ��ns
0 2 n2s

0 � �dns�x� 2 dn2s�x��

1 �J�2� �dns�x� 2 dn2s�x��2, (2)
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where s is the spin index for the majority or minority
electrons. The screening electron energy is the sum of
the Coulomb term and the exchange term. We formally
define a spin-dependent potential Us by taking a functional
derivative of the screening electron energy with respect to
dns�r�,

eUs�x� �
≠�Wc 1 We�

≠dns�x�
� Es

0 1 eVc�x� 1 J�dns�x� 2 dn2s�x�� ,

(3)

where Vc�x� satisfies Poisson’s equation, i.e.,

d2Vc�x�
d2x

� 2�e�e0� �dn"�x� 1 dn#�x�� , (4)

and Es
0 � �J�2� �ns

0 2 n2s
0 � is the exchange potential of

the ferromagnet; it is independent of charge buildup and
the difference of the potentials for spin up and spin down
is precisely the splitting of the spin up and down bands,
J�n"

0 2 n
#
0�. The second and third terms in Eq. (3) are

the potentials due to induced charges; one can interpret
them as the electric field (spatial derivative of the potential)
penetrating into the magnetic metal. The second term
is from the Coulomb interaction among buildup charges,
which is usually the focus in discussing the electron
screening in metals and degenerate semiconductors. The
third term, which is absent in nonmagnetic metals, appears
as a consequence of the spin-split bands of ferromagnetic
metals. We show below that it is this third term that makes
coupling between spins and charges.

To solve for the spin-dependent potential and induced
charge density, it is necessary to model the dielectric
response. In the case of a weak external electric field,
one may consider a linear relation between the induced
charge and the spin-dependent potential,

dns�x� �
Z

Rs�x, x0�Vs�x0� dx0, (5)

where Rs�x, x0� is the charge-density response kernel and
Vs�x� � Vc�x� 1 �J�e� �dns�x� 2 dn2s�x�� is the in-
duced spin-dependence potential. By combining Eqs. (3)
through (5), we find
dn"�x� 2 dn#�x� �
Z

D�x, x0�Vc�x0�dx0 2
J
e

Z
S�x, x0� �dn"�x0� 2 dn#�x0�� dx0 (6)
and
d2Vc�x�

d2x
� 2

e
e0

Z
S�x, x0�Vc�x0� dx0

1
J
e0

Z
D�x, x0� �dn"�x0� 2 dn#�x0�� dx0,

(7)

where we have defined the difference and the sum of the
response kernels for two spin channels, i.e., D�x, x0� �
R"�x, x0� 2 R#�x, x0� and S�x, x0� � R"�x, x0� 1 R#�x, x0�.
Thus, the problem of the surface screening is reduced to
solving the above complex integrodifferential equations.
Equation (6) describes the induced magnetization and
Eq. (7) the charge buildup. To solve these coupled
equations, appropriate boundary conditions and explicit
forms of the response kernels are needed.

First, consider boundary conditions in two interesting
experiments. One is for spin-polarized field emission
experiments where the electric field is directly applied to
the ferromagnet surface. Then, the spin polarization of
the emitted electrons from the surface is measured. In
this case for an applied field E0 the boundary condition
takes the form, i.e.,
dVc�0�
dx

� 2E0 (8)

at the surface x � 0 and Vc�x� � 0 deep inside the metal.
In a magnetic tunnel junction, one applies a voltage

Va across the junction. Assuming the electric field
is uniform inside the insulator barrier, the boundary
condition becomes

e0
dVc�0�

dx
� e0

dVc�t�
dx

� ei
Vc�t� 2 Vc�0�

d
,

(9)

and Vc�`� 2 Vc�2`� � Va, where the two interfaces are
at x � 0 and at x � t; ei is the effective dielectric
constant of the insulator barrier, and we have assumed
that the magnetic electrodes at both sides of the insulator
barrier are identical. Clearly, this case is not as simple as
that of the field emission case, since it involves both the
potential and the derivative of the potential at interfaces.

Next we model the kernel Rs�x, x0� using the random
phase approximation (RPA). Within a free electron
model, the response function for each spin band is
Rs�x, x0� � 2

√
mks

F e2

h̄2p2

! Z
dy

"
1
2

1
1 2 y2

4y
ln

É
1 1 y
1 2 y

É#
e2iks

F �x2x0�y , (10)

where ks
F is the Fermi wave vector of spin s. With this explicit expression of the kernel and the boundary conditions,

Eqs. (8) or (9), one can determine the charge buildup dns�x�. While the structure of the above equations bears very
much in common with the spin-polarized coupling across nonmagnetic spacers, there are several interesting distinctions:
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(1) While the usual spin density waves are generated
by spin-dependent perturbations at the interface for a
nonmagnetic metal, they can be generated by spin-
independent perturbations (external electric fields) for a
ferromagnet. (2) Similar to Friedel and RKKY oscilla-
tions, charge and magnetization oscillate with the period
determined by Fermi wave vectors k

"
F and k

#
F . However,

the induced charge and magnetization contain multiple pe-
riods such as 2p��k" 1 k#� and 2p��k" 2 k#� because the
spin-up and spin-down electrons are coupled in Eqs. (8)
and (9).

While the RPA is a valid approximation to study
the asymptotic behavior of the induced charge density,
the local response is useful to understand the screening
at the first monolayer of the surface. In a magnetic
tunnel junction, the electronic structure at the very first
layers determines the tunneling characteristics. Therefore,
this case has direct relevance to the recently discovered
voltage dependence of the spin-polarized tunneling in
MTJ [6]. In the linearized Thomas-Fermi model, the
kernel is

Rs�x, x0� � 2ers�eF�d�x 2 x0� , (11)

where rs�eF� is the density of states at the Fermi level
for spin s. While the Thomas-Fermi is a rather crude
approximation and it gives poor quantitative values, our
intention is to illustrate the importance of the spin-
dependent screening on the spin-polarized effects. This
approximation gives an exact solution of our problem
and qualitative estimations can be readily carried out.
With this local relation, Eqs. (6) and (7) reduce to simple
differential equations,

dn"�x� 2 dn#�x� � 2
r" 2 r#

1 1 J�r" 1 r#�
eVc�x� (12)

and
d2Vc�x�

dx2 �
1
l2 Vc�x� , (13)

where we define the screening length as

l �

(
e2

e0

r" 1 r# 1 4Jr"r#

1 1 J�r" 1 r#�

)21�2

. (14)

In a nonmagnetic metal where r" � r# and J � 0, the
above equation reduces to the conventional Thomas-
Fermi screening length, lN � �e2r�e0�21�2, where r

is the density of states. In the presence of exchange
interactions and spin polarization (r" fi r#), it is easily
seen from Eq. (14) that the Thomas-Fermi screening
length is enhanced, i.e., l . lN . A quite long Thomas-
Fermi screening length can be realized in systems with
large asymmetric spin-dependent densities of states, e.g.,
if the exchange constant J is large and if r" ¿ r#. To
qualitatively estimate the size of the effect, we use bulk
Ni, Co, and Fe [8] even though the electronic structures
of the surfaces are expected to be different from the bulk.
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We take the exchange parameter J to be the same as used
by others [7]. The Thomas-Fermi screening lengths in Ni,
Co, and Fe calculated from Eq. (14) are given in column
five.

If one applies this local response screening to a
magnetic tunnel junction, Eq. (13) has a simple solu-
tion Vc�x� � Vc�0� exp�x�l� for the left electrode and
Vc�x� � Va 2 �Va 2 Vc�t�� exp�2�x 2 t��l� for the
right electrode, where Va is the applied voltage and t
is the thickness of the insulator layer. By using the
boundary condition given by Eq. (9), one can easily
determine Vc�0�,

Vc�0� �
eilVa

e0t 1 2eil
, (15)

where we have assumed that the left and right electrodes
are identical. The total magnetization accumulation at the
left electrode per interface atom is found by integrating
Eq. (12) to be

dMacc �
Z 0

2`
�dn" 2 dn#�mB dx

�
e0ei�r# 2 r"�mBVa

e2�r" 1 r# 1 4Jr"r#� �e0t 1 eil�
,

(16)

and the difference of the potentials for spin up and down
is

V "�x� 2 V #�x� �
2J�r# 2 r"�Vc�0� exp�x�l�

1 1 J�r# 1 r"�
. (17)

If one interprets that Vs�0� is the voltage absorbed in the
electrode, the above equation shows the spin dependence
of the voltage absorption. Therefore, one anticipates
that the effective barrier seen by conduction electrons is
different for spin up and down. This will affect the spin-
dependent tunnel rates, as we will show below. In the
last two columns of Table I, we list the average voltage
for spin up and down absorbed in the electrodes, and the
magnetization accumulation at the interface for Ni, Co,
and Fe electrodes.

The induced screening charges and magnetization have
several immediate consequences. First, the capacitance of
a junction departs from its geometrical capacitance, C0 �
eiA�t, since part of the applied voltage is absorbed by the
electrodes. This phenomenon had been first discussed in
nonmagnetic metals [9]. The reduction of the capacitance
from its classical value can be quite significant for thin
insulator barriers. For example, the capacitance of the
junction is reduced by factor of 2 for a device which has
an insulator layer thickness of 24 Å and Co electrodes;
see column six of Table I. Second, the magnetization
accumulation will affect the spin polarization of the tunnel
currents. To see this, we note that the tunnel current
is primarily governed by interface electronic structures
which are altered by the presence of spin-dependent band
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TABLE I. Parameters extracted from bulk band structures of Ni, Co, and Fe: J values were taken from Ref. [8] and r",# from
Ref. [7]. l’s were calculated from Eq. (14), Vc�0��Va from Eq. (15). t is the barrier thickness in units of Å, the dielectric constant
was assumed to be 8, and Va is in units of volts, dMacc is the induced magnetic moment per interface atom.

Electrode Eex�eV� r"�eV�21 r#�eV�21 l�Å� 2Vc�0��Va dMacc�mB

Ni(fcc) 0.65 0.18 1.56 0.9 14.4��t 1 14.4� 0.12Va��t 1 14.4�
Co(hcp) 1.25 0.18 0.70 1.5 24.0��t 1 24.0� 0.088Va��t 1 24.0�
Fe(bcc) 2.40 0.87 0.24 1.3 20.8��t 1 20.8� 20.044Va��t 1 20.8�
bending at the interfaces, i.e., the absorbed voltage is
different for spin up and down electrons; see Eq. (17).
Thus, one anticipates that this effect contributes to the
voltage dependence of the magnetoresistance in MTJ.
Quantitative calculation will depend on models used for
electron tunneling [10].

Finally, we wish to comment on the effect of our
spin-dependent field penetration on spin-polarized field
emission experiments. In such experiments, an applied
voltage with typical magnitude of the order of a few
volts is directly applied to a magnetic surface. To as-
sure adequate electron emission, the separation between
the surface and the tip must be small, usually only a few
angstroms. Thus, the electric field is quite strong at the
emitting surface and one anticipates that measured spin
polarization of the emitting current depends sensitively
on the separation between the surface and the tip. In-
deed, different experimental groups have observed quite
different spin-polarization data for the same Ni samples
[11]. This can be interpreted as due to a subtle differ-
ence in electric fields used by different groups. For ex-
ample, one may estimate the voltage dependence of the
emitting spin current Is by a simple direct tunnel for-
malism as Is � is

0 exp�2sK
p

�f 2 eVs� � where is
0 is

related to the spin resolved density of states, s is the sepa-
ration between emitting surface and the tip, f is the effec-
tive average barrier height without taking into account the
field penetration, and K is related to the effective mass
of tunnel electrons. By taking reasonable parameters,
e.g., K � �1 Å21� �V �21�2, f � 3 eV, and Va � 2 eV,
the spin polarization of the emitting current changes sig-
nificantly by decreasing the distance s from 7 to 5 Å (in
this example, it will be 50%). This dramatic change has
been reported experimentally by Alvarado [12].

In summary, we have studied electron screening in
ferromagnetic surfaces in applied electric fields. The
screening potential has an important spin-dependent con-
tribution. The interplay of the screening due to Coulomb
and exchange interactions was analyzed. A complicated
integrodifferential equation which governs the surface
charge and magnetization buildup was derived. Within a
local response approximation, the equation was solved for
a magnetic tunnel junction. In addition, nonequilibrium
charge and magnetization accumulations were estimated
for Ni, Co, and Fe.
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