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One-Dimensional SU(4) Spin-Orbital Model: A Low-Energy Effective Theory
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The one-dimensional spin-orbital model is studied by means of Abelian bosonization. We derive
the low-energy effective theory which enables us to study small deviations from the SU(4) symmetric
point. We show that there exists a massless region with algebraically decaying correlation functions
� cos��p�2a0�x�x23�2. When entering the massive phase, the system displays an approximate SO(6)
enlarged symmetry with a dimerization type of ordering consisting in alternating spin and orbital
singlets.

PACS numbers: 75.10.Jm, 75.40.Gb
The interest in spin-orbital models stems from the pos-
sibility of understanding the magnetic structures of transi-
tion metal compounds [1]. In most of these materials, in
addition to the usual spin degeneracy, the low-lying elec-
tron states are also characterized by orbital degeneracy.
It is thus believed that the unusual magnetic properties
observed in many of these compounds should be ex-
plained in terms of simple multiband Hubbard-like models.
Very recently, the discovery of new spin-gapped mate-
rials, Na2Ti2Sb2O [2] and Na2V2O5 [3], has attracted
renewed interest in the spin-orbital models. These mate-
rials have a quasi-1D structure [4] and are modeled by a
quarter-filled two-band Hubbard model which, in the limit
of strong Coulomb repulsion, is equivalent to two interact-
ing Heisenberg models with the Hamiltonian:

H �
X

i

J1
�Si ? �Si11 1 J2

�Ti ? �Ti11

1 K� �Si ? �Si11� � �Ti ? �Ti11� , (1)

where �Si and �Ti are spin-1�2 operators representing the
spin and orbital degrees of freedom at each site i, and J1,2
and K are positive constants.

The Hamiltonian (1) is invariant under independent
SU(2) rotations in the spin � �S� and orbital � �T � spaces.
It can also be recast as a two-leg spin ladder with a
four-spin interchain coupling. In the limit K ø J1,2 this
interaction, which can be generated either by phonons or
(in the doped state) by the Coulomb repulsion between the
holes, gives rise to a non-Haldane spin-liquid state where
magnon excitations are incoherent [5]. The physically
relevant question is whether or not this scenario can be
extended to larger values of K for which (1) is expected
to be of experimental relevance.

As a matter of fact, we already know that this cannot be
the case. Indeed, the interesting feature of the Hamiltonian
(1) is that at J1 � J2 � K�4 it is not only SU�2� 3 SU�2�
symmetric but actually has an enlarged SU(4) symmetry
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[6]. At this special point, the model is Bethe-ansatz solv-
able [7] and critical with three gapless bosonic modes; in
the conformal field theory language, that means that the
central charge is c � 3 and, as shown by Affleck [8], the
critical theory corresponds to the SU�4�1 Wess-Zumino-
Novikov-Witten (WZNW) model. Clearly, there should be
a qualitative change in the physical behavior of (1) when
going from small to large values of K . From the theoreti-
cal point of view, this situation is striking because it im-
plies that one cannot go continuously from weak to strong
coupling. This is a manifestation of Zamolodchikov’s c
theorem which states that, starting at K � 0 with two de-
coupled S � 1�2 Heisenberg chains with the total central
charge c � 2 (two gapless bosons), one cannot flow—in
the renormalization group (RG) sense—towards the SU(4)
point which has a larger central charge c � 3. Therefore,
the physics in the neighborhood of the SU(4) point can-
not be understood in terms of weakly coupled Heisenberg
chains, and the general strategy employed to tackle spin
ladders does not apply here: A new effective theory is to
be developed. It is the purpose of this work to do so. Be-
low, we present an effective continuum description of the
model (1) at the SU(4) point, based on Abelian bosoniza-
tion, and derive the low-energy expressions for the spin
and orbital densities. With these results at hand, we then
investigate the properties of differing phases occurring at
small deviations from the SU(4) point.

Abelian bosonization at the SU(4) point.—We start by
introducing the SU(4) Hubbard model with U . 0:

HU �
X
ias

�2tc
y
i11ascias 1 H.c.�

1
U
2

X
iabss0

niasnibs0�1 2 dabdss0� . (2)

Here, c
y
ias creates an electron with the “flavor” (orbital)

index a � 1, 2 and spin s �", #, and nias � c
y
iascias . It

will be assumed that the electron band is quarter-filled
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implying that the Fermi momentum kF � p�4a0, where
a0 is the lattice spacing. The spin and orbital operators
are defined as

�Si �
1
2

X
a

c
y
iaa �sabciab , �Ti �

1
2

X
a

c
y
iaa �tabciba ,

(3)

where �s � �t� are the Pauli matrices acting in the spin
(orbital) space.

The low-energy physics can be described in terms of
right-moving �Ras� and left-moving �Las� fermions which
replace the original lattice fermion ciaa in the continuum
limit �x � ia0�:

cias
p

a0
� Ras�x� exp�ikFx� 1 Las�x� exp�2ikFx� . (4)

At this point, we introduce four chiral bosonic fields
FasR,L using Abelian bosonization of Dirac fermi-
ons: R�L�as � kas�2pa0�21�2 exp�6i

p
4p FasR�L��.

The bosonic fields satisfy the commutation relation
�FasR , Fbs0L� �

i
4dabdss0. Anticommutation between

the fermions with different spin-channel indices is ensured
by Klein factors (here Majorana fermions) kas . It is
then suitable to employ a physically transparent basis
(cf. Ref. [9]):

Fc � �F1" 1 F1# 1 F2" 1 F2#��2 ,

Fs � �F1" 2 F1# 1 F2" 2 F2#��2 ,

Ff � �F1" 1 F1# 2 F2" 2 F2#��2 ,
(5)

Fsf � �F1" 2 F1# 2 F2" 1 F2#��2 .

In the new basis, the total charge degree of freedom
is described by Fc, while the non-Abelian (spin-orbital)
degrees of freedom are faithfully represented by three
bosonic fields Fa �a � s, f, sf �. It is now straightfor-
ward to obtain the continuum limit of the Hubbard Hamil-
tonian (2) which exhibits separation between the charge
and spin-orbital parts of the spectrum. The charge sec-
tor is described by a Gaussian model for the field Fc

perturbed by an umklapp term � cos
p

16pKc Fc gener-
ated in higher orders of perturbation theory. Though at
small U the umklapp term is irrelevant and the charge
excitations remain gapless, one expects that on increas-
ing the Coulomb interaction the nonuniversal parameter
Kc�U� will decrease and eventually reach the critical value
Kc�Uc� � 1�2 where a Mott transition occurs to an insu-
lating phase [8,12]. Though one certainly expects the sys-
tem to be insulating in the limit U�t ! ` [1,10,11], the
question whether a commensurability gap, mc, opens at a
finite value of U is beyond the scope of perturbation the-
ory. Very recently, Assaraf et al. [12] using an improved
Monte Carlo method were able to show that there exists a
critical value U � Uc � 2.8t above which mc fi 0. As-
suming U . Uc, in what follows we shall focus on the
spin-orbital sector described by the Hamiltonian:
Hso �
X

a�s,f,sf

(
yF

2
��≠xFa�2 1 �≠xQa�2�

1
G3

p
�≠xFa�2

)

2
G3

p2a2
0

X
afib

cos
p

4p Fa cos
p

4p Fb , (6)

where G3 � 2Ua0�2, and Qa � FaL 2 FaR are the
fields dual to Fa. The structure of the last term in (6)
immediately suggest refermionization of the three bosonic
fields Fa in terms of six real (Majorana) fermions ja,
a � �1, . . . , 6�:

�j1 1 ij2�R�L� �
h1

p
pa0

exp�6i
p

4p FsR�L�� ,

�j3 1 ij4�R�L� �
h2

p
pa0

exp�6i
p

4p FfR�L�� , (7)

�j5 1 ij6�R�L� �
h3

p
pa0

exp�6i
p

4p FsfR�L�� ,

hi being another Klein factor. In this representation the
original SU(4) transformations of the complex fermion
fields appear as SO(6) rotations on the Majorana sextet
�ja	, reflecting the equivalence SU�4� � SO�6�. To get
a better insight in the symmetry properties of our model,
let us define the spin and orbital triplets: �js � �j2, j1, j6�
and �jt � �j4, j3, j5�. Those transform as vectors under
spin SO�3�s and orbital SO�3�t rotations, respectively. In
the Majorana representation, the Hamiltonian (6) reduces
to an SO(6) Gross-Neveu (GN) model:

Hso � 2
iys

2

6X
a�1

�ja
R≠xja

R 2 ja
L≠xja

L� 1 G3

√
6X

i�1

ki

!2

,

(8)
with ki � j

i
Rj

i
L. Since G3 , 0, we conclude that the

interaction term in (8) is marginally irrelevant and the
model flows towards six decoupled massless real fermi-
ons. Thus, at the fixed point �G�

3 � 0�, the spin-orbital
sector is described by the SO�6�1 ��SU�4�1� WZNW
model with the central charge c � 6 3 1�2 � 3.

To complete our description of the SU(4)-symmetric
critical point, we present the continuum expressions for
the effective spin and orbital densities:

�S � �JsR 1 �JsL 1 exp�ipx�2a0� �Ns

1 H.c. 1 �21�x�a0 �ns ,

�T � �JtR 1 �JtL 1 exp�ipx�2a0� �Nt

(9)

1 H.c. 1 �21�x�a0 �nt ,
Here �Js,t are the smooth �k � 0� parts of these densi-
ties, while �Ns,t and �ns,t are the 2kF � p�2a0 and 4kF �
p�a0 parts. Notice that Eqs. (9) have a more complicated
structure than that of the spin density in the usual Hubbard
model. The emergence of 4a0 oscillations and the cor-
responding complex fields �Ns,t is a consequence of the
band’s quarter-filling. The smooth and 2kF contributions
can be computed directly from Eqs. (3). We find that the
625
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chiral vector currents,

�JsR�L� � 2
i
2

�jsR�L� ^ �jsR�L� ,

�JtR�L� � 2
i
2

�jtR�L� ^ �jtR�L� ,

are in fact SU�2�2 currents, in contrast with a single
Heisenberg chain where the smooth part of the spin
density is a sum of SU�2�1 vector currents. The fields

�Ns,t are nonlocal in the Majorana fermions �js,t . How-
ever, as in the two-leg ladder problem [13], they acquire
a local form when expressed in terms of order and
disorder operators sa and ma of the six critical Ising
models associated with the six Majorana fermions.
The expressions of �Ns,t are manifestly SO�3�s,t in-
variant; here we give only their z components: N z

s �
A�im1m2s3s4s5s6 1 s1s2m3m4m5m6� and N z

t �
A�is1s2m3m4s5s6 1 m1m2s3s4m5m6�, where A is a
nonuniversal constant. At the critical point, the order and
626
disorder operators have scaling dimension 1�8, so the
2kF densities �Ns,t have dimension 3�4. Since the �S and
�T densities involve fermionic bilinears, it may appear sur-
prising to find 4kF contributions �ns,t . However, nothing
prevents higher harmonics to be generated in interacting
systems. The structure of �ns,t can be anticipated by
symmetry arguments: These fields should be chirally
invariant and transform as vectors under SO�3�s,t rota-
tions. These requirements lead to the following simple
expressions: �ns � iB �jsR ^ �jsL and �nt � iB �jtR ^ �jtL

where B is another nonuniversal constant. The scaling
dimension of the �ns,t fields is 1.

Deviations from the SU(4) point.—We are now in a
position to investigate the properties of the model (1)
at small deviations from the SU(4) point. We shall
restrict consideration to symmetric perturbations, J1 �
J2 � K�4 1 G, jGj ø K , and postpone the study of a
more general case to a future publication. Using the low-
energy representation of the spin-orbital densities, one can
expand (1) around the SO�6�1 fixed point to find
H � 2iu�2� �jsR ? ≠x
�jsR 2 �jsL ? ≠x

�jsL� 2 iu�2� �jtR ? ≠x
�jtR 2 �jtL ? ≠x

�jtL�

1 G3�k1 1 k2 1 k3 1 k4 1 k5 1 k6�2 1 G��k1 1 k2 1 k6�2 1 �k3 1 k4 1 k5�2� . (10)
The Hamiltonian (10) describes two SO(3)-symmetric,
marginally coupled, spin and orbital GN models. The G
term breaks SU�4� � SO�6� symmetry down to SO�3�s ≠
SO�3�f . Notice that all interactions are marginal. This
is the reason why we have also kept the marginally
irrelevant �G3� term which is already present at the SU(4)
point [Eq. (8)]. The emerging picture is to be opposed
to the case of two weakly coupled Heisenberg chains
where the interchain interaction J� gives rise to a strongly
relevant perturbation (of scaling dimension 1) and thus
opens a spectral gap at arbitrarily small J� [5]. The RG
equations for the couplings in (10) are easily obtained at
the one-loop level:

�G � G2 2 2GG3, �G3 � 4G3�G 1 G3� . (11)
The flow analysis reveals the existence of three different
regions: A, B, and C, shown in Fig. 1.

In the region B, all couplings are irrelevant and a
model with initial conditions in B flows towards the
SO�6�1 fixed point. The system is critical and the corre-
lation functions G�x, t� � 
 �S�x, t� ? �S�0, 0�� � 
 �T �x, t� ?
�T �0, 0�� display a power law behavior. In the long distance
limit, G�x, t� is dominated by the contributions at k � 0,
k � 2kF , and k � 4kF :

G0�x, t� � 2
3

4p2 ��x 1 iut�22 1 �x 2 iut�22� ,

Gp�2�x, t� � A2 cos

√
p

2a0
x

!
�x2 1 u2t2�23�4, (12)

Gp �x, t� � �21�x�a0B2�x2 1 u2t2�21,
the leading asymptotics thus being Gp�2. In the regions A
and C, the interaction is relevant and leads to the dynam-
ical generation of a mass gap. In the far infrared limit,
all trajectories flow towards the asymptote L: G � 22G3.
There the interacting part Hamiltonian (10) transforms to

Hint � G�2�k1 1 k2 1 k6 2 k3 2 k4 2 k5�2. (13)

Upon the transformation �jtR�L� ! 6 �jtR�L�, the interac-
tion (13) is easily seen to acquire an SO(6) symmetric
form. However, the conclusion that the SO(6) symme-
try is restored in both phases A and C would be incor-
rect. The scaling portrait in phase C is similar to the
crossover sector of the Kosterlitz-Thouless phase diagram
for the U(1)-symmetric Thirring model where an exact
(Bethe-ansatz) solution [14] confirms restoration of SU(2)
up to exponentially small corrections. Using arguments
given recently by Azaria et al. [15], we therefore expect
that restoration of SO(6) is a specific feature of phase
C, while in the massive region A the nature of elemen-
tary excitations is more complicated reflecting the exis-
tence of several energy scales. The development of the

G

A

C

L

G3

B

FIG. 1. Flow diagram for isotropic couplings.
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strong-coupling regime in the SO(6) GN model, describ-
ing phase C, leads to generation of a fermionic mass. As
a consequence, 
k1,2,6� � 2
k3,4,5� fi 0, indicating spon-
taneous breakdown of translational invariance. Indeed,
the dimerization operators for each chain, Ds � �21�i �Si ?
�Si11 and Dt � �21�i �Ti ? �Ti11, express in terms of the
energy densities of the two SO(3) spin and orbital GN
models: Ds � k1 1 k2 1 k6 and Dt � k3 1 k4 1 k5.
Therefore 
Ds� � 2
Dt� � 6D0, and the system orders
in one of two, doubly degenerate, ground states with al-
ternating spin and orbital singlets, in agreement with the
weak coupling results [5].

Calculating the exact dynamical correlation functions
in the massive phases is difficult. While hopeless in the
broken-symmetry phase A, this task could be accomplished
in principle in the symmetry-restored phase C since the
SO(6) GN model is integrable. The full treatment which
takes into account the Z2 degeneracy of the ground state
and the existence of topological (kink) excitations in ad-
dition to the fundamental fermion will be presented else-
where. However, since the mass of the fermion is smaller
than twice the kink mass, we expect that fermions will
dominate at sufficiently low energy. Their contribution to
the correlation functions can be estimated by a mean field
approach:


 �S�x, t� ? �S� y, 0�� � A2 cos

√
p

2a0
x

!
cos

√
p

2a0
y

!
K0�MR�

2 �21�x�a0B2K2
0 �MR� ,


 �T �x, t� ? �T � y, 0�� � A2 sin

√
p

2a0
x

!
sin

√
p

2a0
y

!
K0�MR�

(14)

2 �21�x�a0B2K2
0 �MR� ,

where R �
p

�x 2 y�2 1 u2t2 and K0�MR� is the real
space propagator of a free massive fermion. We observe
that, on top of an incoherent background at k � p (with
weight �B2), there is a coherent magnon peak at k � p�2
(with weight �A2). This is to be contrasted with the
situation at weak coupling �K ø J� where only incoherent
magnons at k � p exist [5]. At this point, it is worth
commenting on the status of the nonuniversal parameters
A and B that enter in the expressions of the spin densities.
The numerical results [11,16] at the SU(4) symmetric
point are in good agreement with the expressions (12). In
particular, these results have revealed that the peak in the
static susceptibility at 2kF is much greater than the one
at 4kF , thus suggesting that A ¿ B at the SU(4) point.
This is not to be the case when one deviates from the
SU(4) symmetric point, and the question that naturally
arises is how, as K decreases, one will move from strong
to weak coupling regimes. Since our solution for large
K captures the properties of both regimes, it is natural
to make the hypothesis that the crossover is encoded in
the K dependence of the nonuniversal constants A and
B. In the simplest scenario, one may conjecture that
B�K� will increase as K decreases while A�K� should
decrease. Since A is found to be zero at weak coupling,
one may further suspect that it will vanish for K smaller
than a critical value KD . Such a special point where some
oscillating component of the correlation function vanishes
is called a disorder point [17].

Let us conclude, comparing our results with the recent
numerical calculations by Pati et al. [4]. Our result for the
phase B is in agreement with the numerical data. In the
phase C these authors find a doubly degenerate ground
state which forms alternating spin and orbital singlets,
in agreement with our results. However, they conclude
that the mass gap opens with an exponent �1.5 6 0.25,
whereas the bosonization approach predicts that the gap
is exponentially small with the deviation from the SU(4)
symmetric point. Moreover, they interpret their data in fa-
vor of incommensurate correlations in contrast with (14).
In the continuum approach, we found no room for in-
commensuration since the parity breaking (“twist”) term
i �Na�x 1 a0� ? �N y

a �x� 1 H.c., which appears upon de-
viating from the critical SU(4) point and which might be
a potential source of incommensurations [18], turns out to
be irrelevant (with dimension 3). Our result supports an-
other scenario in which the correlation functions contain
components at k � 0, p and p�2, with amplitudes de-
pending on K .

We are grateful to Roland Assaraf, Michel Caffarel, and
Michele Fabrizio for illuminating discussions.
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