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Screening, Coulomb Pseudopotential, and Superconductivity in Alkali-Doped Fullerenes
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We study the static screening in a Hubbard-like model using quantum Monte Carlo methods. We
find that the random phase approximation is surprisingly accurate almost up to the Mott transition. We
argue that in alkali-doped fullerenes the Coulomb pseudopotential m� is not very much reduced by
retardation effects. Therefore efficient screening is important in reducing m� sufficiently to allow for
an electron-phonon driven superconductivity. In this way the fullerides differ from the conventional
picture, where retardation effects play a major role in reducing the electron-electron repulsion.
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The random phase approximation (RPA) has been very
widely used in solid state physics. It properly describes
the screening when the kinetic energy is much larger
than the interaction energy [1]. In the opposite limit,
however, the RPA is qualitatively wrong. Little is known
about the more interesting situation when the two energies
are comparable. In this paper we show for a Hubbard-
like model that the RPA gives a surprisingly accurate
description of the static screening on the metallic side of
a Mott transition until the system is close to the transition.

For conventional superconductors, the electron-phonon
interaction leads to an effective electron-electron at-
traction. This interaction is counteracted by the strong
Coulomb repulsion, which is, however, believed to be
strongly reduced by retardation effects [2,3]. The re-
sulting effective Coulomb interaction is described by the
dimensionless Coulomb pseudopotential m�, which is be-
lieved to be typically of the order 0.1. Here we argue that
the situation for A3C60 (A � K, Rb) is different. We find
that retardation effects are rather inefficient. Therefore
the screening of the Coulomb interaction becomes impor-
tant for reducing the electron-electron repulsion. Thus,
although the superconductivity in A3C60 is driven by the
electron-phonon interaction [4], the origin of the strong re-
duction of m� is different from the current picture of con-
ventional superconductors. In the scenario we are putting
forward, several puzzling phenomena find a natural
explanation. In A3C60 (A � K, Rb) the transition tem-
perature Tc is reduced by pressure [5]. For Cs3C60,
however, which only under pressure becomes a supercon-
ductor, Tc increases with pressure [6]. This is consistent
with the picture where m� is reduced by screening, since
the screening is less efficient close to a Mott transition.
Furthermore, it was very early pointed out that the alkali
phonons ought to couple efficiently to the electrons [7],
although later experiments showed that this was not the
case [8]. We show that efficient screening reduces the
coupling to the alkali phonons.

We first discuss the screening in the RPA. In the
random phase approximation it costs only kinetic energy
to screen a test charge. In the limit where a typical
0 0031-9007�99�83(3)�620(4)$15.00
Coulomb integral U is large compared with the bandwidth
W , the kinetic energy cost of screening is relatively
small compared with the potential energy gain, so the
screening is efficient. This means that as a test charge
q is introduced on a site c, almost the same amount of
electronic charge moves away from the site, leaving it
almost neutral. This argument neglects, however, that
when an electron leaves a site it has to find another site
with a missing electron or there is a large Coulomb energy
penalty. Thus the RPA is accurate for small values of
U�W , while it is qualitatively wrong for large values. It
is not clear what happens for intermediate values.

To study the screening in A3C60, we use a Hubbard-like
model, including the threefold degenerate t1u orbital:
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The first term describes the kinetic energy, the second
term the on-site Coulomb interaction, and the third term
the interaction with the test charge q on site c. cim,s
annihilates an electron on site i with orbital quantum
number m and spin s, and nims � c

y
imscims . The effect

of orientational disorder [9] is built into the hopping
integrals tim,jm0 , which depend on the orbitals and the
relative orientation of the molecules [10]. The bandwidth
is about 0.63 eV. Multiplet effects are not included, but
we remark that they tend to be counteracted by the Jahn-
Teller effect which is also neglected. The test charge is
assumed to interact with the electrons on the same site via
the Coulomb integral U. The system has three electrons
per molecule, i.e., a half filled t1u band.

We have investigated the model by using lattice quan-
tum Monte Carlo (QMC) methods [11,12]. In diffusion
Monte Carlo (DMC), a trial function jcT � is constructed
and allowed to diffuse towards the exact solution, under
the constraint of a fixed node approximation. jcT � is ob-
tained from a generalized Gutzwiller ansatz [13]

jCT � � gDg
nc
0 jC0� , (2)
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where jC0� is a Slater determinant constructed from
solutions of Eq. (1) in the Hartree approximation, D is
the number of double occupancies in the system, and
nc is the number of electrons on site c. g and g0 are
variational parameters. gD is the usual Gutzwiller factor
while g

nc
0 allows us to optimize the charge on the site

with the test charge. In addition to the DMC calculation,
we also perform a variational Monte Carlo calculation
(VMC), and the energy is minimized as a function of
g and g0 [14]. In all cases, the state is assumed to
be paramagnetic. For U�W � 2.5, there is a transition
to an antiferromagnetic Mott insulator [12], where the
screening is very inefficient. Here, however, we focus
on U�W , 2.5. We obtain the charge on site c from
the extrapolated estimator nc � 2nc�DMC� 2 nc�VMC�,
where nc�VMC� is the expectation value for the wave
function (2) calculated by VMC, and nc�DMC� is the
mixed estimator from the DMC calculation.

To test the accuracy of the approach, which involves
the fixed-node approximation and uses the extrapolated
estimator, we have compared the results of our QMC
calculations with the results from exact diagonalization
of a system with four molecules (12 electrons). The
comparison shown in Fig. 1 illustrates that the QMC
calculations are quite accurate for the system we are
analyzing here.

Since we are interested in the linear response, we
should calculate the effect of an infinitesimally small test
charge q. Because of the statistical error in a QMC
calculation, it is, however, difficult to determine the
response to a small perturbation. To get a good signal-
to-noise ratio, we would therefore like to use as large a
test charge as possible. To estimate how large we can
make q and still be in the linear response regime, we have
performed Lanczos calculations for a range of different
test charges. We find that for q # 0.25e the response is
practically linear.
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FIG. 1. Screening charge Dn on the site of the test charge
(q � 0.25e) as a function of U�W , where U is the Coulomb
interaction and W is the bandwidth. Exact diagonalization and
QMC calculations have been performed for four molecules
(12 electrons). The figure shows that the QMC calculations
are quite accurate over the whole range of U�W .
We have performed QMC calculations for larger clus-
ters of Nmol � 32, 48, 64, 72, and 108 molecules, where
exact diagonalization is not possible. The screening
charge Dnc � nc�0� 2 nc�q� was extrapolated to infinite
cluster size, assuming a finite-size scaling of the form
Dnc � Dnc�Nmol� 1 a�Nmol. The finite-size extrapola-
tion gives only a small correction to the screening charge
found for the large clusters. The results are shown in
Fig. 2. For rather small values of U�W (�0.5 1.0), the
RPA somewhat underestimates the screening. Such a
behavior is also found in the electron gas [15]. For inter-
mediate values of U�W (�1.0 2.0) the RPA gives sur-
prisingly accurate results. This is one of the main results
of this paper. For large U�W , the RPA rapidly becomes
qualitatively wrong, as discussed earlier. We are now in
the position of addressing the superconductivity in A3C60.

In the theory of superconductivity, a dimensionless
quantity m�, the Coulomb pseudopotential, is introduced
to describe the effects of the Coulomb repulsion. One
introduces m � UN�0�, where U is a typical screened
Coulomb interaction and N�0� is the density of states per
spin at the Fermi energy. Retardation effects renormal-
ize m to m�, and are described by ladder diagrams in
the statically screened Coulomb interaction [2,3]. It is
found that

m� �
m

1 1 m ln�vel�vph�
�

1
ln�vel�vph�

, (3)

where vel and vph are typical electron and phonon energy
scales, respectively. Often m ln�vel�vph� is substantially
larger than unity. In that limit the last part of Eq. (3)
holds; i.e., m� is determined solely by retardation effects,
independently of the screening, which only changes m.
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FIG. 2. Screening charge Dn on the site of the test charge
(q � 0.25e) as a function of U�W , extrapolated to infinite
cluster size. The full curve shows the screening charge in the
RPA, obtained from Hartree calculations for the Hamiltonian
(1). The crosses with errorbars give the results of the QMC
calculations. We show the errorbars from the QMC calculation
with the largest statistical errors. The actual errors should be
substantially smaller since the extrapolated values are obtained
from a number of independent calculations. The RPA remains
rather accurate up to U�W � 2, but fails badly for larger values
of U�W . The screening is very efficient for U�W � 0.5 2.0.
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In solid C60 we have many narrow subbands (�0.5 eV
wide), spread over a range of about 30 eV. In the tradi-
tional approach one assumes that the relevant energy range
extends over all of this region. Summing the ladder dia-
grams in the screened Coulomb interaction leads to a large
renormalization of m. Exact results for a two-band model
show, however, that in the appropriate limits this approach
greatly overestimates the renormalization due to the upper
subband [16]. In the limit when a subband is far away from
the Fermi energy, the correct approach is to first project
out the high energy degrees of freedom corresponding to
this subband. This leads to an effective Hamiltonian, ex-
pressed in terms of the unscreened Coulomb matrix ele-
ments, which describes the low energy properties of the
system. The main difference between the two approaches
is the order in which high and low energy degrees of free-
dom are treated. In the traditional approach the Coulomb
interaction is screened first, which, in particular, involves
the low energy degrees of freedom. After this, the high en-
ergy degrees of freedom are projected out. This approach
involves uncontrolled approximations. Our approach, in-
stead, projects out the high energy degrees of freedom first,
and it allows us to make statements about the importance
of these degrees of freedom. Although these arguments
were presented in the context of C60, they are rather gen-
eral. We now make more specific arguments for C60 to
provide further evidence that the retardation effects from
higher subbands are not very large.

From Auger measurements on K6C60, the Coulomb in-
teraction U between two holes in an otherwise full t1u

band has been estimated to about 1.5 eV [17]. This re-
duction of U from about 4 eV [18] for a free molecule
to about Uinsul � 1.5 eV for the insulating solid is mainly
due to intramolecular processes and to polarization of the
molecules surrounding the two holes. Since the excitation
energy of the relevant final state in the Auger experiment
is rather small (about 1.5 eV), Uinsul should contain the
renormalization from all the higher subbands, except pos-
sibly the ones closest to the t1u band. If we multiply Uinsul
by N�0� � 6 [19], the result is a very large m � 9, much
too large to allow for a phonon induced superconductivity
unless m is further reduced by other effects.

In K3C60 screening and retardation effects inside the t1u

band become available. The argument against summing
ladder diagrams in the screened interaction were justified
only for higher subbands. Within the t1u band we
therefore rely on this conventional theory [2,3], which in
addition usually uses Thomas-Fermi or RPA screening.
A priori, the use of RPA seems highly questionable
for these strongly correlated systems. Our calculations,
however, support this approximatiom unless the system
is close to a Mott transition. Taking the long range
Coulomb interaction into account, the RPA screening
reduces m to about 0.4 [16]. Including the additional
retardation effects inside the t1u band according to Eq. (3)
finally renormalizes m to m� � 0.3. Thus the Coulomb
pseudopotential is primarily reduced by screening and
622
not by retardation effects. In contrast, using Eq. (3)
with vel � 15 eV and vph � 0.1 eV would result in
m� & 0.2, practically independent of m. A Coulomb
pseudopotential m� � 0.3 is substantially larger than for
conventional superconductors [2], but it is not so large
that it prevents the superconductivity from being driven
by the electron-phonon interaction [20]. Recent tunneling
experiments give m� � 0.329 for Rb3C60 [21].

We now turn to the question of how Tc changes with
the lattice constant a. The main effect of increasing a is
to decrease the bandwidth W and increase the density of
states at the Fermi level N�0�. Using McMillan’s formula,
Tc is given by

Tc �
vph

1.2
exp

"
21.04�1 1 l�

l 2 m��1 1 0.62l�

#
, (4)

where l � N�0�V is the electron-phonon coupling con-
stant. m� is calculated from m � N�0�Uinsul�1 2 g�,
where Uinsul is a typical unscreened Coulomb matrix ele-
ment and g � dn�dq describes the screening within the
t1u band. Assuming that vel in Eq. (3) is large, m� is
practically independent of the lattice constant a. Since
N�0� increases with increasing a, the electron-phonon
coupling l becomes stronger, increasing Tc [22]. Assum-
ing a small vel, corresponding to the t1u bandwidth, it is
no longer true that m� is independent of m. However,
if the RPA is valid, m is almost independent of the lat-
tice constant, since the increase in N�0� is counteracted
by a slightly more efficient screening gRPA (cf. Fig. 2).
Hence, also in this scenario we find that Tc increases with
a. But what happens when the lattice constant a becomes
large enough that we enter the region where the screen-
ing starts to break down? Then m will start to increase
considerably with a. Assuming a large vel, m� is still in-
dependent of m, and therefore Tc should keep increasing.
For small vel, on the other hand, m� will start to rapidly
increase with a, leading to a steep drop in Tc. This resem-
bles the anomalous behavior observed in Cs3C60: It only
becomes superconducting under pressure, with Tc rapidly
decreasing with increasing lattice constant [6].

It might appear that efficient screening is not really
helpful for superconductivity. Phonons couple to the
electrons by perturbing the potential seen by the electrons
[2,3]. An example is the longitudinal modes of a jellium.
Efficient screening tends to weaken the coupling to such
phonons, since it reduces the perturbation considerably.
To some extent, such a reduction also seems to be at
work in C60. Initially it was expected that the coupling
to the alkali phonons would be very strong [7]. Each C60
molecule is surrounded by 14 alkali ions with relatively
weak force constants. When an electron arrives on a C60
molecule, one would therefore expect that the surrounding
alkali ions respond strongly. This was, however, not
confirmed by experiment. For instance, an alkali isotope
effect could not be observed within the experimental
accuracy [8]. This finding can be naturally understood
as an effect of the efficient screening found in our
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calculations. When an electron arrives on a C60 molecule,
other electrons leave the molecule, which thus stays
almost neutral. The alkali ions then see only a small
change in the net charge and therefore couple weakly.
In a similar way it follows that intramolecular phonons
of Ag symmetry couple weakly. An Ag phonon shifts
all the t1u levels on a given molecule in the same
direction. This shift of the center of gravity can be
screened very efficiently by transferring charge from the
molecules where the levels move upwards to those where
they move downwards. The modes that are important
for the superconductivity in solid C60 are, however,
different. An intramolecular Hg phonon does not shift the
center of gravity of the t1u level. Thus the Hg phonons
are not screened by the transfer of charge. Hence, for
these phonons the efficient screening serves to reduce m�

without affecting the electron-phonon coupling.
In summary, we have calculated the static screening of

a point charge for a Hubbard-like model using quantum
Monte Carlo. We find that the RPA is surprisingly accu-
rate up to values of U�W fairly close to the Mott transi-
tion. For larger U�W the screening rapidly breaks down.
This result should have quite general implications for the
physics of systems close to a Mott transition. Here we
have studied the consequences for the superconductivity
in the alkali-doped fullerenes. We have provided argu-
ments that for A3C60 (A � K, Rb) retardation effects are
very inefficient in reducing the electron-electron repulsion.
Instead, and unlike for textbook superconductors, screen-
ing is mainly responsible for the reduction of the Coulomb
pseudopotential m�. This results in a m� small enough
that the electron-phonon interaction can drive the super-
conductivity. Nevertheless m� is substantially larger than
for conventional superconductors, in agreement with re-
cent experiments. This scenario is quite different from the
conventional picture of a superconductor, where the retar-
dation effects are believed to play the central role in reduc-
ing m�. It explains quite naturally the anomalous pressure
dependence of Tc found for Cs3C60 and the absence of
a strong coupling to the alkali phonons. It also predicts
that the coupling to the Ag phonons is strongly reduced
by screening effects. Finally, our results let us understand
the surprising fact that Tc peaks for systems close to the
Mott transition, where the density of states is large, but the
screening has not yet started to become inefficient.
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