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Transport in Multilevel Quantum Dots: From the Kondo Effect
to the Coulomb Blockade Regime
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A new theoretical method is introduced to study coherent electron transport in an interacting mul-
tilevel quantum dot. The method yields the correct behavior in the limit of both weak and strong
coupling to the leads, giving a unified description of the Coulomb blockade and the Kondo effect.
Results for the density of states and the temperature-dependent conductance for a two-level dot are pre-
sented. The relevance of these results in connection to recent experiments on the Kondo effect in semi-
conducting quantum dots is discussed.

PACS numbers: 73.40.Gk, 72.15.Qm, 73.20.Dx, 73.23.–b
Coherent electron transport in the presence of strong
electron-electron interactions has been one of the central
issues in the field of mesoscopic systems [1]. Semicon-
ducting quantum dots (QDs) provide an almost ideal sys-
tem where the predictions of the theory can be tested. For
instance, recent experiments have demonstrated the possi-
bility of exploring the Kondo effect, a prototypical corre-
lation effect, using this technology [2,3].

From a theoretical point of view, correlation effects have
been mainly analyzed in this type of systems by means of
the single-level Anderson model [4,5]. Within this model
the Kondo effect arises due to fluctuations in the spin of an
unpaired electron [6]. So far, there have been few attempts
to include a multilevel spectrum for describing either single
QDs with quasidegenerate levels or coupled QDs beyond
a rate equation approach [7]. The actual situation in
semiconducting QDs should require the inclusion of a
multilevel spectrum whenever many single-particle states
with a small level separation are involved in the transport
process. This could be the case in experiments measuring
the phase of the transmission amplitude through a QD in
the Coulomb blockade (CB) regime [8] and also in recent
experiments on the Kondo effect [2,3].

The aim of this letter is to introduce a new theoretical
approach for describing correlation effects in multilevel
QDs. The approach is constructed to yield the correct
behavior in the limit of both infinite and vanishing charg-
ing energy. This is achieved by introducing an interpola-
tive self-energy for the one-electron Green functions, an
approach which has been successfully applied to several
interacting systems including the equilibrium and non-
equilibrium Anderson models [5,9]. This type of ap-
proach has been recently rediscovered and applied to
analyze the Mott transition in the Hubbard model for ar-
bitrary band filling [10,11].

For describing the multilevel QD we consider a
model Hamiltonian which is a generalization of the
single-level Anderson model, H � Hdot 1 Hleads 1 HT ,
where Hdot �

P
m emd̂y

md̂m 1 U
P
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to the uncoupled QD with M levels �n̂m � d̂y
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Hleads �
P

k[L,R ekĉ
y
k ĉk to the uncoupled leads, and

HT �
P

m,k[L,R tm,kd̂y
mĉk 1 H.c. describes the coupling

between the dot and the leads. The labels m and l
�1 # m, l # M� in H denote the different dot levels
including spin quantum numbers.

Our main objective is the determination of the dot
retarded Green functions from which the different level
charges and the linear conductance can be obtained. In a
frequency representation they can be written as Gm�v� �
�v 2 eHF

m 2 Sm�v� 2 iGm,L�v� 2 iGm,R�v��21,
where eHF

m � em 1 U
P

lfim nl is the Hartree-
Fock level (we adopt the notation nl � �n̂l�),
iGm,L�R��v� �

P
k[L�R� t2

m,k��v 2 ek 1 i01� and
Sm�v� is a self-energy that takes into account electron-
electron interactions beyond the Hartree-Fock approxima-
tion. We shall neglect the indirect coupling between dot
states [12] and adopt the usual approximation of Gm,L,
Gm,R being independent of energy. In our approach [5,9],
we look for an interpolative self-energy yielding the
correct U�Gm ! 0, ` limits.

In the U�Gm ! ` or “atomic” limit, Gm�v� can be
obtained using the equation of motion method [13], which
yields

G�at�
m �v� �

�
Q

lfim�1 2 n̂l��
v 2 em 1 i01

1
X
lfim

�n̂l
Q

�sfil�fim�1 2 n̂s��
v 2 em 2 U 1 i01

1 · · ·

1
�
Q

lfim n̂l�
v 2 em 2 �M 2 1�U 1 i01

, (1)

In this expression all possible charge states of the dot give
a contribution. Their evaluation requires the knowledge
of many particle correlations �n̂1n̂2�, �n̂1n̂2n̂3�, . . . , etc.
However, for sufficiently large U, fluctuations in the dot
charge with respect to the mean charge N by more than
one electron become negligible and G

�at�
m �v� is accurately

given by the three poles expression
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where N � Int�N �. In order to yield the exact first three momenta of Eq. (1) the weight factors Am
N should satisfy the

following sum rules:
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where �n̂n̂�m �
P

�lfik�fim�n̂l n̂k�. The special case N � 0 �N � M 2 1� has to be treated as N � 1 �N � M 2 2�.
Notice that this expression for G

�at�
m �v� is fully determined by the average charges nl and the two-body correlations

�n̂l n̂k�. From G
�at�
m �v�, one can define an atomic self-energy, S

�at�
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m 2 �G�at��v��21
m . Using Eqs. (2) and

(3), S
�at�
m can be written as
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where am � �N 2 nm� �1 2 �N 2 nm�� 1 �n̂n̂�m, cm � N 2 nm 2 3N , dm � �n̂n̂�m 1 3N2 2 1 2 �3N 2

1� �N 2 nm�, and bm � N2�1 2 N� 2 �N 2 nm�dm. On the other hand, in the U�Gm ! 0 limit, Sm is given by
the second order expression [9]
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where fi � f�ei� denotes the Fermi distribution function at the leads, and r̃m�v� are effective densities of states given
by pr̃m�v� � Gm���v 2 ẽm�2 1 G2

m�. The effective levels ẽm are introduced in order to fulfill the Fermi-liquid
relations associated with charge conservation [Friedel sum rule (FSR) [14]] as discussed below.

In order to determine an interpolative scheme between the two limits, let us first notice that S
�2�
m ! U2am��v 2 ẽm�,

where am �
P

lfim ñl�1 2 ñl�, when Gm�v ! 0. On the other hand, am ! am in the small U limit and thus
S

�at�
m ! U2am��v 2 em� in this case. These properties allow us to define the interpolative self-energy, replacing

v 2 em by am�S
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m 1 Dem, where Dem � ẽm 2 em, in Eq. (4) for S
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This expression provides the generalization to the multi-
level case of the interpolative self-energy first introduced
in [9] for the single-level Anderson model. The single-
level case �M � 2� is readily obtained from Eq. (6) when
N � 1 taking �n̂n̂�m � 0. It is evident by construction
that Sm ! S

�at�
m when U�Gm ! ` and Sm ! S

�2�
m in the

small U limit.
The final step in this approach is to determine the level

charges nm, the correlation functions �n̂l n̂k� and the effec-
tive levels ẽm self-consistently. The charges and the cor-
relations functions are determined through the relations
nm � 2

R`
2` f�v� ImGm�v�dv�p and

P
lfim�n̂l n̂m� �

2
R`

2` f�v� Im�Sm�v�Gm�v��dv��pU�. This last re-
lation follows from the equation of motion of the re-
tarded Green functions. It is important to stress that the
self-consistent determination of the two-body correlations
is essential to get the correct values of the charge for
large U. The effective level is determined by impos-
ing the condition
R`

2` f�v� Im�Gm�v�≠Sm�≠v�dv � 0,
which at zero temperature reduces to the Luttinger theo-
rem [15] ensuring the fulfillment of the FSR [14] nm �
2Im �lnGm�EF���p . In Ref. [5] we showed that the
condition of consistency between the effective and the
final charges is nearly equivalent to imposing the ful-
fillment of the FSR for the simple Anderson model.
Similar self-consistency conditions have been proposed in
Refs. [10,11].

We have first applied this formalism to the case of a dou-
bly degenerate level (M � 4 when including spin) which
is a simple generalization of the single-level Anderson
model. The inset in Fig. 1 shows the charge per level nm

as a function of the leads Fermi energy EF . For the case
shown in Fig. 1, corresponding to em � 0, Gm�U � 0.075
(same for all levels), and zero temperature, one can observe
a modulation in the charge resembling the typical Coulomb
staircase of the Gm�U ! 0 limit.
601



VOLUME 83, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 19 JULY 1999
FIG. 1. Density of states for a fully degenerate two-level dot
with Gm�U � 0.075 and em � 0 for different values of the
leads Fermi energy EF . The inset shows the charge per level
and spin as a function of EF (solid line) as compared to the
Gm�U ! 0 case (dotted line). Energies are measured in units
of U.

Figure 1 also shows the density of states (DOS)
associated with the dot levels for different values of EF�U
corresponding to the steps and the center of the plateaus
in the charging curve. For EF�U � 0, nm � 0.125, the
system is in the so-called mixed-valence regime, the
spectrum being similar to the one found using large N
expansions in the U ! ` limit [16] with a resonance at
a renormalized level just above EF . For EF�U � 0.5
and 1.5 there are approximately one and two electrons,
respectively, inside the dot. For these cases the system
is in the Kondo regime, the DOS exhibiting a sharp peak
around EF halfway between two broader resonances (of
width 	G) approximately separated by U. The weight
of these resonances is the same for the EF�U � 1.5 case
due to the electron-hole symmetry in the half-filled dot,
while there is a pronounced asymmetry for EF�U � 0.5.
For a half-integer occupation of the dot such as in the
EF�U � 1.0 case the DOS exhibits a more complex
structure with three broad resonances around E � 0, U,
and 2U, and a narrow Kondo peak still present at EF .
The overall shape is reminiscent of an average between
the cases with one and two electrons in the dot.

The evolution of the Kondo peak as a function of EF

and temperature should be reflected in the dot linear con-
ductance G, which can be readily obtained from the Green
functions [17]. This is shown for different temperatures in
Fig. 2. When approaching zero temperature the conduc-
tance behaves like G � 4�e2�h� sin2�pnm� as expected
from the FSR. The conductance decreases very rapidly
with temperature in the region 0.5 , EF , 2.5, where the
DOS is controlled by the Kondo peak. Outside this re-
gion one can notice a slight increase of conductance with
602
FIG. 2. Total conductance for the same case of Fig. 1 as
a function of EF for different temperature values T�U:
(a) 0.0005, (b) 0.0025, (c) 0.005, (d ) 0.01, and (e) 0.03.

temperature. At temperatures large enough to be above
the Kondo temperature TK , which can be estimated by the
condition G�TK � � G�0��2 [2], the conductance tends to
exhibit the usual CB peaks at the charge degeneracy points.
We should state that our approach does not provide an ac-
curate estimate of TK as a function of the model parameters
as the exponential decrease of the Kondo peak weight for
very large U [18] is not strictly recovered. This limita-
tion does not affect, however, the qualitative behavior of
the conductance except for a rescaling of the temperature
values.

So far we have analyzed the case of a completely de-
generate level. In an actual QD, geometrical asymmetries
could result in an effective splitting DE of the dot levels.
When DE ¿ G the physical situation could be described
by a single-level Anderson model. It is interesting to ana-
lyze the evolution from this situation to the quasidegener-
ate case DE ! 0 previously discussed. Figure 3 illustrates
the case DE 	 G. As can be observed in the charging
curves shown as an inset, the splitting tends to block the
charging of the upper levels. This blocking effect becomes
nearly complete when DE . G, which is the actual case
in the experiments of Ref. [2]. Figure 4 shows the linear
conductance for a set of parameters which yields a similar
behavior to the experimental data in Figs. 2(a) and 2(b) in
the first paper in Ref. [2]. We have taken DE�U � 0.4,
G1�U � 0.075, and G2�U � 0.1, i.e., a case where the
upper level is somewhat more strongly coupled to the
leads (in Ref. [2], it was suggested that U � 1 2 meV,
DE 	 U, and G � 0.2 meV). The selected temperature
range in Fig. 4, T�U � 0.02 0.05 approximately corre-
sponds to the experimental values T � 400 800 mK).
One can notice that the two conductance peaks associated
with the lower level are strongly asymmetric due to the
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FIG. 3. Total conductance for a two-level dot with splitting
DE�U � 0.1 as a function of EF for different temperature
values T�U: (a) 0.0005, (b) 0.0025, (c) 0.005, and (d ) 0.03.
The inset shows the charge per spin on the two levels as a
function of EF . Only the first half of the curve is shown as the
total conductance is symmetrical with respect to �3U 1 D��2.

presence of the second level, in qualitative agreement with
the data of Ref. [2]. The other two peaks, associated with
the second level, are somewhat less resolved as found ex-
perimentally. The overall effect of temperature is again
to reduce the total conductance in the range for EF where
the Kondo effect is present, while an increase is observed
outside this range. Both effects, the increase of conduc-
tance with temperature between each pair of peaks as well
as the asymmetry, can be considered as manifestations of
the multilevel structure of an actual QD.

The most remarkable consequences of this multilevel
structure would be observed in a situation corresponding
to a smaller splitting, where “collective” Kondo-like fea-

FIG. 4. Total conductance for a two-level dot with DE�U �
0.4, G1�U � 0.075, and G2�U � 0.1 as a function of EF
for different temperature values T�U: (a) 0.02, (b) 0.03,
and (c) 0.05. Parameters are chosen in order to qualitatively
represent the experimental data in Figs. 2(a) and 2(b) of
Ref. [2].
tures such as the ones depicted in Figs. 2 and 3 should ap-
pear. Vertical dots with cylindrical symmetry constitute
an almost ideal realization of the twofold degenerate case.
Some caution should be used, however, regarding the ef-
fects of Hund’s rule (not included in the present approach)
which might introduce some deviation with respect to the
behavior depicted in Fig. 2 when the exchange interaction
between the degenerate levels is not much smaller than U.
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