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Probability Distribution of the Conductance at the Mobility Edge
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The distribution of the conductance P�g� at the critical point of the metal-insulator transition
is presented for three- and four-dimensional orthogonal systems. The distribution is system-size
independent but it depends on the dimension of the system. Its form is discussed and quantitative
formulas for limiting cases g ! 0 and g ! ` are derived. The relation P�g� ! 0 in the limit g ! 0
is proven.

PACS numbers: 71.30.+h, 71.23.−k, 72.15.Rn
As the conductance g in disordered systems is not the
self-averaged quantity, the knowledge of its probability
distribution is extremely important for our understanding
of transport. This problem is of special importance at the
critical point of the metal-insulator transition [1]. While
the distribution of the conductance in the metallic phase
is known to be Gaussian in agreement with the random-
matrix theory [2] and the localized regime is characterized
by the log-normal distribution of g [2], our knowledge
about the critical distribution remains still insufficient.
Numerical studies proved the system-size invariance of
P�g� at the critical point [3–8], which is consistent with
the scaling theory of localization. The shape of the
distribution is, however, not completely understood.

Several attempts have been made to characterize con-
ductance distribution at the critical point. Using the
Migdal-Kadanoff renormalization treatment, huge con-
ductance fluctuations have been predicted in [3]. The
same conclusion was found also in systems of dimension
d � 2 1 ´. In the limit ´ ø 1 the form of the distribu-
tion P�g� was found analytically [4]. However, numerical
studies of the disordered 3D orthogonal system [5] indi-
cated that it is not possible to generalize these analytical
conclusions for realistic 3D systems (´ � 1). Here, no
huge fluctuations of the conductance have been found nei-
ther in linear nor in the logarithmic scale [5,8,9,10].

The form of P�g� for the 2D symplectic models was
found numerically in [6,7]. Recently, P�g� has been
studied also for a system in the magnetic field, both in 3D
[8] and in 2D [11]. The main conclusion of these studies
is that the symmetry of the system influences the form of
the distribution at the critical point more strongly than in
the metallic or localized regime.

Besides the symmetry of the system, there are other
parameters which could influence the form of P�g�. The
invariance of P�g� along the critical line in the (energy,
disorder) plane in the 3D Anderson model has been
proven numerically in [7]. In the same paper it has
been shown that two different microscopic 2D symplectic
models have the same critical conductance distribution.

The proof of the universality of P�g� within a given
universality class would require an analysis of how
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P�g� scales with the system size in the neighbor of the
critical point. It is probably impossible to realize such
an analysis numerically. Nevertheless, numerical results
for the critical point [7,12] indicate that P�g� is a unique
function of the mean value �g�. This would support the
hypothesis of universal scaling of P�g� in spite of the fact
that the form of P�g� itself depends for a given model on
some microscopical parameters (e.g., anisotropy) [12] and
even on the choice of the boundary conditions [10].

Studies of the statistics of the conductance have their
counterpart in the analysis of the level statistics s �
Ei11 2 Ei of the eigenvalues of the Hamiltonian [13].
The critical distribution P�s� is also the subject of inten-
sive studies within the past years [14]. In particular, its
dependence on the symmetry [15,16], dimension [17], and
boundary condition [18] has been studied numerically.

In this Letter we present new numerical data for the
conductance distribution P�g� at the critical point of the
3D and 4D Anderson models (orthogonal ensembles).
Our data confirm the system-size invariance of P�g�
and prove that the critical distribution depends on the
dimension. Then we present also a quantitative analysis
of the form of P�g� in limits g ! 0 and g ! `. In
particular, we prove that P�g� ! 0 for g ! 0.

Numerical analysis of the form of P�g� started in [5],
and later in [8]. Recently, small-g behavior was studied in
detail in [9,10]. Our results confirm quantitative behavior
of P�g� as has been found in [5,10].

We calculated the conductance as

g � Trtyt �
X

cosh22�zi�2� , (1)

where quantities zi determine eigenvalues of the transmis-
sion matrix tyt for the disordered system Ld21 3 L (with
periodic boundary condition). Details of the method have
been published elsewhere [5]. For a given system size L,
the probability distribution of g has been calculated from
an ensemble of Nstat samples. The list of used ensembles
together with mean and variances of g is given in Table I.

The last column of Table I presents parameter �z1�,
which corresponds to the parameter L introduced in the
finite-size scaling theory by MacKinnon and Kramer [19]
© 1999 The American Physical Society
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TABLE I. Review of ensembles studied in the present work. L: size of the d-dimensional cube; Nstat: number of samples in a
given ensemble; varg � �g�2 2 �g2�; �z1� is mean of the smallest of z’s. Data for the 3D Anderson model are in good agreement
with [11] (up to the spin degeneracy factor 2).

L Symbol Nstat �g�
p

varg �logg� var logg �z1�

3D Anderson model: Wc � 16.5
6 � 20.000 0.375 0.324 21.481 1.344 2.901
8 � 20.000 0.400 0.333 21.384 1.251 2.803

10 � 10.000 0.410 0.337 21.347 1.229 2.770
12 � 5.000 0.421 0.340 21.302 1.199 2.724
14 � 2.500 0.416 0.338 21.306 1.122 2.725
18 � 500 0.418 0.329 21.279 1.083 2.717

4D Anderson model: Wc � 34.5 [14]
4 22.000 0.190 0.247 22.569 2.301 4.130
5 � 30.000 0.229 0.270 22.275 2.006 3.838
6 � 15.000 0.225 0.269 22.291 2.054 3.852
7 � 7.000 0.239 0.275 22.193 1.971 3.748
8 200 0.227 0.274 22.188 1.692 3.790
as �z1� �
2Lt

LL in the quasi-one-dimensional limit Ld21 3

Lt , Lt ¿ L. When neglecting the smallest system size,
our data confirm the L invariance of �z1� as well as
of �g� and �logg� and their standard deviations. Owing
to higher critical disorder, �z1� is larger in 4D than in
3D. This guarantees that the finite-size effects disappear
more quickly in 4D. Therefore, in spite of the fact
that computer facilities limited the system size to L # 8
for d � 4, obtained data provide us with the relevant
information about all parameters of interest.

We presented in Table I both mean values of g and
logg to underline the common features of 3D and 4D
distribution: the variance of logg is of the order of its
mean value. This relation is typical for the localized
state. On the other hand, the standard deviation of g is
also ��g�. Its value for 3D samples, 0.334, is smaller
than the same quantity calculated for 3D in the metallic
regime [5].

Numerical data for P�g� are presented in Fig. 1.
To compare the distributions for different systems, we
normalize conductance to its mean value. Our data
confirm that the critical distribution of g is system-size
independent, in agreement with previous studies. Fig-
ure 1 shows also that P�g� depends on the dimension of
the system within the same symmetry class. Although
the distribution has the same form for 3D and 4D en-
sembles, it becomes broader for higher d: the probability
to find g ø �g� or g ¿ �g� growths with dimension.
This is due to higher critical disorder, which causes the
electronic state to possess more features of the localized
state than that of the metallic one (remaining critical).
This is in agreement with studies of the level statistics in
4D [14].

The small-g behavior of P�g� can be estimated from
Fig 1. Instead of P�g��g��, we plot in the left side
of Fig. 1 the distribution P �g� of g � logg��g�. Evi-
dently, logP �g� � g 1 logP�expg�. Therefore, an as-
sumption P�g � 0� � c fi 0, implies P � g 1 logc for
g ! 2`.

Figure 1 shows clearly that logP �g� decreases more
quickly than g for all ensembles we consider. This
guarantees that P�g� ! 0 as g ! 0. Let us note that it is
almost impossible to obtain the last result from the studies
of P�g� on the linear scale [9].

The small-g behavior of P�g� is easy to estimate also
from the distribution P�z1� of the smallest parameter z1.
Indeed, small values of g require large values of z1.
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FIG. 1. Probability distribution of logg��g� (left) and g��g�
(right) for 4D (solid symbols) and 3D (open symbols) Anderson
model. For comparison, we plot also data for the 2D
(symplectic) Ando model. The last model exhibits the best
convergence for both small and large values of g. For the
meaning of the symbols, see Table I. The solid line is the
Poisson distribution P�g� � exp�2g��g��.
589



VOLUME 83, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 19 JULY 1999
Neglecting contributions of other channels, we have

1
2´

Z 2´

0
P�g� dg �

1
2´

Z `

z̃1

P�z1� dz1 , (2)

with ´ � exp�2z̃1�. In the limit ´ ! 0 the integral
on the left-hand side (LHS) reads �P�g�, g � ´. The
right-hand side (RHS) could be found analytically for
the special form of P�z1�. In particular, for Wigner sur-
mises P�z1� � p�2�z1�2 3 z1 exp�2p�4 3 �z1��z1�	2�
we obtain that P�g� � g212const3log g�2 with const �

p

4�z1�2 . Consequently, P�g � 0� � 0. Figure 2 assures
that P�z1� decreases more quickly than Wigner surmise
for large z1 in orthogonal ensemble for both 3D and 4D
systems. This assures that P�g� ! 0 as g ! 0.

Linear behavior of the distribution P�z1� for small z1
(see left side of Fig. 2) guarantees nonzero probability that
the first channel is fully open. Indeed, if P�z1� � C 3 z1
for z1 ! 0, then the probability that the first channel con-
tribution to the conductance, g1 � 1� cosh2�z1�, equals to
1, is C. This explains the origin of the characteristic bump
in the distribution P�g� for g � 1. In Fig. 1, the bump is
clearly visible for both 3D and 4D systems.

Figure 1 (RHS) confirms that P�g� decreases more
quickly than exponentially for large g. This is easy to
understand on the basis of the analysis of the statistics of
z’s presented in [5].

Figure 3 shows mean values and variances of some
smallest z’s for both 3D and 4D systems. Evidently,
�zi� � O �1� and variance varzi decreases quickly with in-
dex i. Consequently, the contribution to the conductance
from the second (higher) channel is, due to (1), small
(negligible). To estimate this contribution, we note that
all higher zi , i $ 2, are normally distributed [5]. Their

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.0 2.0 3.0
10

-4

10
-3

10
-2

10
-1

10
0

z1/<z1>

P(z1/<z1>)

4D 3D

FIG. 2. Probability distribution of (normalized) z1 for 4D
and 3D Anderson models. The solid line is Wigner surmises
PW �z� �

p

2 z exp�2 p

4 z2	. For the mean value �z1�, see Table I.
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mean and variances have been estimated as �zi� � �z1� 3

i1��d21� and varzi � �zi�2�d22� [20]. Although this result
holds only in the quasi-one-dimensional limit, where the
mutual correlations of z’s are negligible, they serve as a
good quantitative estimation also for true d-dimensional
cubes. As i is seen in Fig. 3, this agreement is better for
4D than for 3D. Then, the probability to find g � n is
less than exp�2�zn��2varzn	 � exp�2const 3 nd��d21�	
and

P�g� � exp 2 const 3 gd��d21�, g ! ` . (3)

We conclude that presented numerical data for 3D and
4D Anderson models prove the system-size invariance
of the conductance distribution at the critical point.
Although the distribution depends on the dimension and
symmetry of the system, we found its common features,
namely exponential decrease of P�g� for g . 1, and a
decrease of P�g� to zero for g � 0.

We explained the form of P�g� using the statistical
properties of parameters z introduced by relation (1).
As the last can be easily analyzed numerically, this
treatment opens new possibilities for detailed quantitative
description of P�g�. Such analysis is more simple for
higher dimension, where the statistical correlations of z’s
are supposed to be less important.

The statistical properties of z’s explain also the dimen-
sion dependence of P�g� and gives at least a qualitative
explanation why the analytical results, obtained in [4] for
dimension d � 2 1 ´, could not be applied to 3D sys-
tems [5]. Our results are consistent with studies of the
level statistics in 4D systems [17].

Presented data could not prove the invariance of P�g�
with respect to the change of the microscopic parameters
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FIG. 3. varzi as a function of �zi� (only for �z� , 15� for 3D
(open symbols) and 4D (solid symbols) orthogonal systems.
Note the system-size invariance of presented parameters (at
least for i # L).
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of the model (energy, anisotropy, etc.). However, the com-
mon scaling of parameters z in the quasi-one-dimensional
limit, found in [21], together with formula (1) indicates that
the distribution P�g� is completely determined by only one
parameter within the given symmetry class: we can choose
it as �z1�, Lc � 2��z1�, or �g�. This means that two models
a and b, with different microscopical parameters (energy,
anisotropy, etc.), have the same critical distribution P�g�
iff Lc�a� � Lc�b�. Our numerical data for 3D and 2D
systems [7] as well as for anisotropic systems [12] confirm
this assumption.
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[12] P. Markoš (unpublished).
[13] B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides,

and H. B. Shore, Phys. Rev. B 47, 11 487 (1993).
[14] I. Kh. Zharekeshev and B. Kramer, Phys. Rev. Lett. 79,

717 (1997).
[15] M. Batsch, L. Schweitzer, I. Kh. Zharekeshev, and

B. Kramer, Phys. Rev. Lett. 77, 1552 (1996).
[16] E. Hofstetter, Phys. Rev. B 57, 12 763 (1998).
[17] I. Kh. Zharekeshev and B. Kramer, cond-matt/9810286.
[18] D. Braun, G. Montambaux, and M. Pascaud, Phys. Rev.

Lett. 81, 1962 (1998).
[19] A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546

(1981).
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