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3D Spinodal Decomposition in the Inertial Regime

V. M. Kendon,1 J-C. Desplat,2 P. Bladon,1 and M. E. Cates1

1Department of Physics and Astronomy, University of Edinburgh, JCMB King’s Buildings, Mayfield Road, Edinbu
EH9 3JZ, United Kingdom

2Edinburgh Parallel Computing Centre, University of Edinburgh, JCMB King’s Buildings, Mayfield Road, Edinbur
EH9 3JZ, United Kingdom

(Received 25 February 1999)

We simulate late-stage coarsening of a 3D symmetric binary fluid using a lattice Boltzmann method.
With reduced lengths and times, l and t, respectively (with scales set by viscosity, density, and
surface tension), our data sets cover 1 & l & 105 and 10 & t & 108. We achieve Reynolds numbers
approaching 350. At Re * 100 we find clear evidence of Furukawa’s inertial scaling (l � t2�3),
although the crossover from the viscous regime (l � t) is very broad. Though it cannot be ruled
out, we find no indication that Re is self-limiting (l � t1�2) as proposed by M. Grant and K. R. Elder
[Phys. Rev. Lett. 82, 14 (1999)].

PACS numbers: 64.75.+g, 07.05.Tp, 82.20.Wt
When an incompressible binary fluid mixture is
quenched far below its spinodal temperature, it will phase
separate into domains of different composition. Here we
consider only fully symmetric 50�50 mixtures in three
dimensions, for which these domains will, at late times,
form a bicontinuous structure, with sharp, well-developed
interfaces. The late-time evolution of this structure re-
mains incompletely understood despite theoretical [1–4],
experimental [5], and simulation [6–10] work.

As emphasized by Siggia [1] and Furukawa [2], the
physics of spinodal decomposition involves capillary
forces, viscous dissipation, and fluid inertia. Thus, as-
suming that no other physics enters, the control parame-
ters are interfacial tension s, fluid mass density r, and
shear viscosity h. From these can be constructed only
one length, L0 � h2�rs, and one time, T0 � h3�rs2.
We define the length scale L�T � of the domain struc-
ture at time T via the structure factor S�k� as L �
2p

R
S�k� dk�

R
kS�k� dk. The exclusion of other physics

in late-stage growth then leads us to the dynamical scal-
ing hypothesis [1,2]: l � l�t�, where we use reduced time
and length variables, l � L�L0 and t � �T 2 Tint��T0.
Since dynamical scaling should hold only after interfaces
have become sharp, and transport by molecular diffu-
sion ignorable, we have allowed for a nonuniversal offset
Tint; thereafter the scaling function l�t� should approach
a universal form, the same for all (fully symmetric, deep-
quenched, incompressible) binary fluid mixtures.

It was argued further by Furukawa [2] that, for small
enough t, fluid inertia is negligible compared to viscosity,
whereas for large enough t the reverse is true. Dimen-
sional analysis then requires the following asymptotes:

l ! bt; t ø t�, (1)

l ! ct2�3; t ¿ t�, (2)
where, if dynamical scaling holds, amplitudes b and c (and
the crossover time t�) are universal. The Reynolds num-
ber, conventionally defined as Re � r�hL dL�dT � l�l,
becomes indefinitely large in the inertial regime, Eq. (2).
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In a recent paper, Grant and Elder have argued [4]
that the Reynolds number cannot, in fact, continue to
grow indefinitely. If so, Eq. (2) is not truly the large t
asymptote, which must instead have l � ta with a #

1
2 .

Grant and Elder argue that at large enough Re, turbulent
remixing of the interface will limit the coarsening rate [4],
so that Re stays bounded. A saturating Re (which they
estimate as Re � 10 100) would require any t2�3 regime
to eventually cross over to a limiting t1�2 law. But if a
single length scale l � t1�2 is involved, a saturating Re
implies balance between viscous and inertial terms (t23�2),
while the driving term (interfacial tension) remains much
larger than either (t21). This suggests a failure of scaling
altogether, with at least two length scales relevant at late
times. In any case, the arguments of Grant and Elder are
far from rigorous; the coarsening interfaces could remain
one step ahead of the remixing despite an ever-increasing
Re which, if applied to a static interfacial structure, would
break it up. Thus Eq. (2) cannot yet be ruled out as a
limiting law.

In what follows we present the first large-scale simu-
lations of 3D spinodal decomposition to unambiguously
attain a regime in which inertial forces dominate over
viscous ones. We find direct evidence for Furukawa’s
l � t2�3 scaling, Eq. (2). Although a further crossover to
a regime of saturating Re cannot be ruled out, we find no
evidence for this up to Re � 350. Our work, which is
of unprecedented scope, also probes the viscous scaling
regime [Eq. (1)], and the nature of the crossover between
this and Eq. (2). Full details of our results [11] and of the
simulation algorithm [12] will be published elsewhere.

Our simulations use a lattice Boltzmann (LB) method
[13,14] with the following model free energy:

F �
Z

dr

(
2

A
2

f2 1
B
4

f4 1 r̃ lnr̃ 1
k

2
j=fj2

)
,

(3)
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in which A, B, and k are parameters that determine
quench depth (A�B ! 1 for a deep quench) and in-
terfacial tension (s �

p
8kA3�9B2); f is the usual or-

der parameter (the normalized difference in number den-
sity of the two fluid species); r̃ is the total fluid
density, which remains (virtually) constant throughout
[14,15].

The simulation code follows closely that of [14] (for
details see [11,12]) and uses a cubic lattice with nearest
and next-nearest-neighbor interactions (D3Q15). It was
run on Cray T3D and Hitachi SR-2201 parallel machines
with system sizes up to 2563. The LB method allows
the user to choose h, s, r (we set r � 1 without loss
of generality), along with the order-parameter mobility M
defined via �f � = ? M=�dF�df�. Although it plays no
role in the arguments leading to Eqs. (1) and (2), M must
be chosen with some care to ensure that at late times (a) the
algorithm remains stable, (b) the local interfacial profiles
remain close to equilibrium (so that s is well defined),
and (c) the direct contribution of diffusion to coarsening is
negligibly small. Table I shows the parameters used for
our eight 2563 runs.

In all runs, the interface width is j � 5
p

k�2A � 3 in
lattice units. This was found [11] to be the minimum
acceptable to obtain an accurately isotropic surface tension.
To minimize diffusive effects, data for which the diffusive
contribution to the growth rate was greater than 2% were
discarded [16]; this corresponded to a minimum value of
L of 15 , Lmin , 24, depending on the run parameters.
The large size of our runs allowed a ruthless attitude to
finite size effects: we use no data with L . L�4, with
L the linear system size. In our 2563 runs, these filters
mean that the good data from any single run lie within
20 & L # 64, a comparable range to previous studies [6–
8]. Data sets of high and low L0 are well fit, respectively,
by a � 1 and 2�3 (see Fig. 1).

However, as emphasized by Jury et al. [8], meaningful
tests of scaling are best made not by looking at single
data sets but by combining those of different parameter
values. To this end, the good data from each run were
fit to L � B�T 2 Tint�a , so as to extract an intercept Tint;
we then transformed the data to reduced physical units l
and t defined above. The exponent a was first allowed
to float freely; this gave reproducible values at large l
and t (e.g., a � 0.69 and 0.67 for the last two data sets
in Table I), but more scattered ones at small l and t
(a � 0.88, 0.86, and 1.16 for the first three data sets).
In the latter region the floating fit is relatively poorly
conditioned; it also gives large relative errors in Tint (see
Fig. 1). In contrast, fits to a � 1 for these three data sets
gave much better data collapse with consistent values of
b (b � 0.073, 0.073, and 0.072 6 0.01). Thus we are
confident of a � 1 in this region. For the remaining data
sets we estimate errors in individual exponent values at
around 10% and in reduced time t around 3% to 10%.
Figure 2 shows all our data sets on a single plot using
reduced variables l and t. Such a plot is necessarily log-
log, since our data sets span seven decades in t and five in
l, a range which exceeds all previous studies combined.

These LB results are fully consistent with the existence
of a single underlying scaling curve l � l�t�, in which
viscous (l � bt) and inertial (l � ct2�3) asymptotes are
connected by a long crossover, whose breadth justifies our
use of a single floating exponent a in the fits used above
to extract Tint for each run. Although we cannot rule it
out for still larger times t, we see no evidence for a further
crossover to a regime with asymptotic exponent a # 1�2
as demanded by Grant and Elder [4].

Before considering our results in more detail, we discuss
their relation to others previously published. We restrict
attention to those 3D data sets for which reliable estimates
of L0 and T0 exist [9]. Data sets of Laradji et al. [6] and
of Bastea and Lebowitz [7] are shown on Fig. 2 (fitted to
a � 1 [8]). These lie in an l and t range (1 & l & 20) in
which our own data show viscous (linear) scaling [Eq. (1)];
both data sets were claimed to confirm the linear law by
their authors, but with differing values of b � 0.13 and
0.3. Our own b values are lower than either (see above
and Fig. 2). As noted above, we took special care to ensure
that the diffusive contribution to coarsening was small; we
have found that, for matching L0 and T0 values, LB data
sets similar to those of Refs. [6,7] can be generated using
too large a mobility M. We hypothesize therefore that
both data sets have strong residual diffusion, leading to an
overestimate of b. Likewise the data of Appert et al. [10],
which lies in the crossover regime of our scaling plot,
asymptotes to our data from above; this suggests that their
fitted exponent a � 2�3 is too low because of diffusion.

A different explanation, based on a possible nonuniver-
sality of the physics of topological reconnection of do-
mains, was suggested by Jury et al. [8], whose dissipative
particle dynamics (DPD) results also appear in Fig. 2 (in-
set) [17]. These authors found that each data set was well
fit by a linear scaling, Eq. (1), but with a systematic in-
crease of the b coefficient upon moving from upper right to
lower left in the scaling plot [8]. Their alternative sugges-
tion was that their own data, and that of Refs. [6,7], were
part of an extremely broad crossover region, 1 & t & 104

in reduced time. Our LB data support the idea of a broad
crossover, but instead places it at 102 & t & 106. Note
that, unlike those of Refs. [6,7], all the data sets of Jury et
al. do lie very close to our own (Fig. 2, inset). Since the
two simulation methods are entirely different, this lends
support to the idea of a universal scaling, although the fact
that each DPD run is best fit by a locally linear growth law
does not [8]. The latter could be partly due to finite size
effects; to obtain enough data, Jury et al. included results
up to L � L�2, whereas we reject all data with L . L�4.

The arguments of Ref. [8] involve the intrusion of a
second length scale, alongside L0, which in the LB context
is the interfacial width j (or more generally, a molecular
scale). The ratio h � j�L0 for real fluids is in the
range 0.05 (water) to 1027 (glycerol). In simulations, j

cannot be smaller than the lattice spacing, and the inertial
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TABLE I. Parameters used in LB runs.

L0 T0 A, B k h M s

36 930 0.083 0.053 1.41 0.1 0.055
5.9 71 0.0625 0.04 0.5 0.5 0.042
5.9 71 0.0625 0.04 0.5 0.2 0.042
0.95 4.5 0.0625 0.04 0.2 0.3 0.042
0.15 0.89 0.006 25 0.004 0.025 4.0 0.0042
0.010 0.016 0.006 25 0.004 0.0065 2.5 0.0042
0.000 95 0.000 64 0.003 13 0.002 0.0014 8.0 0.0021
0.000 30 0.000 19 0.001 25 0.0008 0.0005 10.0 0.000 82
region is achieved by setting L0 ø 1, so h ¿ 1. In this
sense our interface is “unnaturally thick”: simulation runs
that enter the inertial regime do so directly from a diffusive
one, without an intervening viscous regime. However,
this should not matter if l�t� follows a universal curve,
as our results (in contrast to Ref. [8]), in fact, suggest.
But the microscopic length still plays an interesting role,
as follows. As a fluid neck stretches thinner and thinner
before breaking, it shrinks laterally to the scale j; diffusion
then takes over to finish the job of reconnection. So,
although our work involves length scales where the direct
contribution of diffusion to domain growth is negligible,
we must ensure that it is handled correctly at smaller scales.
This factor limits the accessible range of l and t, not only
at the lower [8] but also at the upper end [11].

The breadth of the viscous-inertial crossover is some-
what less extreme when expressed in terms of Re (see
above); our data span 0.1 & Re & 350 and the crossover
region is roughly 1 & Re & 50. Re values (at L � 50)
for each run are shown in Fig. 3 against reduced time
t. Data are consistent with Re � t1�3 as predicted from
Eq. (2). Note that, in simulating high Re flows, one should
strive to ensure that the dissipation scale [18] [defined as
ld � �h3�er3�1�4, with e the energy dissipation per unit
volume] always remains larger than the lattice spacing.
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FIG. 1. L vs T for the runs shown in Table I with L0 � 5.9
(M � 0.2) (circles) and 0.0003 (diamonds). The region used
for fitting is delimited by (Lmin , L , Lmax � 64) and the
fits are projected back to show the intercepts, Tint. The fits
(solid) are to a � 1 and 2�3; free exponent fits are also shown
(dashed), with best fit values a � 1.16 and 0.69.
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This ensures that any turbulent cascade (whose shortest
scale is ld) remains fully resolved by the grid. Equat-
ing dissipation with the loss of interfacial energy, one has
e � d�s�L��dT and so, in reduced units, ld � �l2�l�1�4.
Comparable e values are found directly from our simulated
velocity data; and ld remains larger than the grid size for
all our runs [19].

A decisive check that we really are simulating a
regime where inertial forces dominate over viscous ones,
is based directly on the velocity fields found in our
simulations [11]. From these we calculated rms values of
the individual terms in the Navier-Stokes equation (r �
1), �≠v�≠t 1 v ? =v� � h=2v 2 = ? P. Here P, the
pressure tensor, contains the driving terms arising from
interfacial tension. Ratios R1 � �≠v�≠t�rms��h=2v�rms
and R2 � �v ? =v�rms��h=2v�rms were then computed;
these can be seen in Fig. 3. The ratio R2 is closely related
to the Reynolds number Re: it differs in representing
length and velocity measures based on the rms fluid flow
rather than on the interface dynamics and, because the
length scales associated with the velocity gradients are
smaller than the domain size, is significantly smaller than
Re. The dominance (by a factor of 10) of inertial over
viscous forces is, at late times, nonetheless clear (Fig. 3).
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FIG. 2. Scaling plot in reduced variables �l, t� for LB data,
bold lines (left to right) are those of Table I (top to bottom).
Squares, Ref. [10]; triangles, Ref. [6]; circles, Ref. [7]. Inset:
DPD data of Ref. [8] (solid lines) with one of our data sets
(L0 � 0.15, circles) repeated for comparison.
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FIG. 3. Reynolds numbers Re � l�l (filled squares) for L �
50 for (left to right) runs in Table I (top to bottom). Ratios
R1 (circles), R2 (triangles), the rms inertial to viscous ratios
(see text) at L � 30 for runs with (left to right) L0 � 36, 2.9,
0.59, 0.15, 0.054, 0.024, 0.01, 0.01, 0.0016, 0.000 95, 0.000 39,
and 0.0003 [system sizes 963 (open symbols) and 1283 (filled
symbols)]. Errors are of the order of the symbol size.

We finally ask whether, at the largest Re values we
can reach, there is, in fact, significant turbulence in the
fluid flow. One quantitative signature of turbulence is
the skewness S of the longitudinal velocity derivatives;
this is close to zero in laminar flow but approaches S �
20.5 in fully developed turbulence [18]. We do detect
increasingly negative S as Re is increased but reach only
S � 20.3 for Re � 350 [11]. This suggests that at our
highest Re’s, turbulence is at most partially developed—a
view confirmed by visual inspection of velocity maps [11].
Grant and Elder’s suggestion of an eventual transition to
turbulent remixing thus remains open.

In conclusion, we have presented LB simulation data for
3D spinodal decomposition which spans an unprecedented
range of reduced time and length scales. At t & 102

(Re & 1) we observe linear scaling, as announced in the
previous literature [6–9]. This is followed by a long
crossover (102 & t & 106, or 1 & Re & 50) connecting
to a regime in which inertial forces clearly dominate
over viscous ones (see Fig. 3); our work is the first to
unambiguously probe this regime in 3D [10]. In the region
so far accessible (106 & t & 108, or 50 & Re & 350)
Furukawa’s prediction of t2�3 scaling is obeyed, to within
simulation error. An open issue is whether this regime
marks the final asymptote or whether a further crossover
occurs to a turbulent remixing regime (saturating Re) as
proposed by Grant and Elder [4]. If it does, we have shown
that any limiting value of Re must significantly exceed
their estimate of 10 100.
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