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Orbital Magnetic Dipole Mode in Deformed Clusters: A Fully Microscopic Analysis
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The orbital M1 collective mode predicted for deformed clusters in a schematic model is studied in
a self-consistent random-phase-approximation approach which fully exploits the shell structure of the
clusters. The microscopic mechanism of the excitation is clarified and the close correlation with the E2
mode established. The study shows that the M1 strength of the mode is fragmented over a large energy
interval. In spite of that, the fraction remaining at low energy, well below the overwhelming dipole
plasmon resonance, is comparable to the strength predicted in the schematic model. The importance of
this result in view of future experiments is stressed.

PACS numbers: 36.40.Cg, 36.40.Gk, 36.40.Vz, 36.40.Wa
Among the collective excitations which may occur in
metal clusters, the magnetic dipole mode predicted for de-
formed clusters in a schematic model [1] has unique and
appealing properties which deserve a deeper investigation.
This excitation, which is the analog of the scissors mode
predicted [2] and observed [3] in deformed nuclei, is pro-
moted by rotational oscillations of the valence electrons
against the jellium background. Indeed, in the semiclassi-
cal approach [1], the displacement field of the mode is com-
posed of a rigid rotational velocity field plus a quadrupole
term which comes from the boundary condition that the ve-
locity flow vanishes on the deformed surface. The distor-
tion of the momentum Fermi sphere generates a restoring
force of the rotational oscillations. The mode is character-
ized by the magnetic quantum number Kp � 11 and falls
at an excitation energy [1]
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e and vp are, respec-

tively, the harmonic oscillator (HO) and the plasma
frequencies; d is the deformation parameter, rs is the
Wigner-Seitz radius, eF is the Fermi energy (rs � 2.1 Å
and eF � 3.1 eV for Na clusters), and Ne is the number
of valence electrons in a cluster. The latter is related
to the number N of atoms in a cluster by N � Ne or
N � Ne 1 1 according to the fact that the cluster is
neutral or has a positive charge Z � 11. The mode gets
a M1 strength given by
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e is the collective

mass parameter. As the formulas show, the M1 mode
is peculiar of deformed clusters. Its occurrence would
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represent a unique and unambiguous fingerprint for the
onset of quadrupole deformation. The main indicator
of the deformation available so far is the splitting of
the E1 resonance which, however, is often washed out
or not properly resolved experimentally. The energy
formula (1) reveals another appealing property. The M1
mode falls well below the energy of the overwhelming
E1 resonance and, therefore, has good chances of being
detected experimentally. In view of such a possibility,
it is of the utmost importance to test the predictions
of the schematic model by carrying out a microscopic
calculation which fully exploits the shell structure of the
clusters. Such a calculation should shed light on the
microscopic mechanism which generates the mode and
should reveal, eventually, new properties connected with
the shell structure. It certainly will ascertain if and to
what extent the M1 strength is fragmented and quenched.
Clearly such a mode can be detected and can be used as a
signature for deformation only if its M1 strength remains
concentrated in a reasonably narrow energy range.

We performed our calculation in a self-consistent
random-phase-approximation (SRPA) approach [4–6]
which in the most general formulation [4] is based on
the Kohn-Sham functional [7]. Here we skipped the
self-consistent derivation of the one-body potential and
adopted the phenomenological deformed Woods-Saxon
well. On the other hand, we determined self-consistently
the two-body potential starting with a set of displacement
fields =fL21, where

fL21 � rL�Y21 1 Y�
21�, L � 2, 4, 6, 8. (3)

The resulting interaction was a sum of weighted separable
terms peaked on different slices of the system. Because of
its close link to the detailed structure of the system, such
an interaction, in spite of its separable form, came out to
be quite suitable for describing its dynamical properties.
The SRPA fully exploits the shell structure and, as shown
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for the dipole response [6], reaches the accuracy of the
most refined and complete RPA approaches. Moreover, it
preserves the simplicity of the schematic model [1] which
can be easily recovered if an anisotropic HO potential plus
the single operator f221 � r2�Y21 1 Y�

21� is used.
The choice of a quadrupolelike field was motivated by

its close connection with the generator of the rotational
oscillation, namely, the angular momentum (see [8], and
references therein). Such a link can be easily established
for L � 2 in the HO space, where one finds

�pjlxjh� �

s
4p
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being b�v0� � 2v0 for the DN � 0 space and b�v0� �
dv0 for DN � 2 (N is a principle shell quantum num-
ber). On the other hand, the quadrupole fields act obvi-
ously also in the E2 channel. Consistency requires that
both, magnetic dipole and electric quadrupole, excitations
should be treated contextually. It is worth noting that, the
choice made for our displacement fields [see Eq. (3)] is
quite general for our purposes. Indeed, since spin-orbit
coupling in clusters is negligible, the orbital excitations
are decoupled from the spin ones, so that the spin-spin
interaction can be safely neglected. The spin-quadrupole
fields can be also ignored. In the nuclear systems, they are
known to affect only the spin channel by renormalizing the
spin-spin interaction.

The parameters of the Woods-Saxon potential VWS �
V0��1 1 exp��R�Q� 2 r��a0	
 with R�Q� � R0�b0 1

b2Y20�Q�	 and R0 � r0N1�3 were adjusted so as to
reproduce the Kohn-Sham + SRPA results for the dipole
plasmon in spherical sodium clusters [4]. The fit yielded
r0 � 2.5 Å, V0 � 27.2 eV, and a0 � 1.25 Å for singly
charged clusters and r0 � 2.4 Å, V0 � 25.7 eV, and
a0 � 1.11 Å for neutral clusters. The values of the
deformation parameter d �

p
45�16p b2 were extracted

from the experimental data [9] (for Ne # 34) following
the prescription of Ref. [1], or were taken from the
calculations [10] (for Ne . 34). Only clusters with
measured or predicted axial quadrupole deformation were
considered. Equal deformation parameters were used for
both charged and neutral clusters. As shown in Ref. [5],
the SRPA calculations with these parameters account
well for the observed deformation splitting of the dipole
plasmon in deformed Na clusters.

The most meaningful results of the calculation are pre-
sented in Figs. 1–3. In Fig. 1 the M1 strength distribution
is plotted for singly charged clusters varying from N � 15
to 295. In order to simulate the temperature broadening,
we smoothed out the M1 strength with the Lorentz weight
using the averaging parameter D � 0.05 eV. Such a simu-
lation is in general rather rough as compared to an ex-
plicit treatment of electronic and ionic thermal fluctuations.
Nonetheless, since we do not pretend to describe specific
thermal effects, this simulation should be sufficient for our
purposes, if we confine ourselves within the temperature
58
interval 300–600 K, where jellium approximation is ap-
propriate. We also gave in Fig. 1 a quantitative estimate of
the Landau damping by computing the width G of the reso-
nance which ideally envelops all the peaks above a thresh-
old value fixed to be one-half the height of the highest

FIG. 1. Energy distribution of the M1 strength over the
interval 0–1 eV for sodium clusters ranging from N � 15 to
295. The deformation parameter d, the energy centroid v, the
quantity G for estimating the Landau damping, and the summed
M1 strength [

P
B�M1�] are given for each cluster.
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FIG. 2. Plot of the M1 and E2 SRPA photoabsorption cross
sections over the full energy range in Na1

119. The curves give
the Lorentz averaged SRPA response, while the underlying
bars show the pure discrete spectra, which better illustrate the
Landau damping.

peak [6]. This definition yields the standard full width at
half maximum (FWHM) in the simplest case of one-peak
structure. The plot shows that, as the size of the cluster in-
creases, the whole M1 strength is shifted downward with
rising magnitude and fragmentation. Only in going from
the light prolate Na1

27 to the light oblate Na1
35, this trend is

not observed. In heavy clusters with Ne � 300, the M1
strength reaches the huge values (350–400)m2

b . The frag-
mentation (Landau damping) gets also very pronounced,
since G and v become comparable. Because of the small
value of v, however, the strength remains concentrated in
a rather narrow energy interval.

The softening of the mode as well as the enhancement
of the M1 strength can be nicely explained within the
semiclassical model with the decreasing importance of the
surface with respect to the bulk as the sizes of the clus-
ter increase. This causes a faster increase of the mass
parameter with respect to the restoring force constant
coming almost entirely from a surface shear, with con-
sequent lowering of the energy centroid (1) and en-
hancement of the M1 strength (2). A more detailed and
exhaustive explanation is provided by the microscopic ex-
citation mechanism. By expanding the deformed single-
particle wave function into a spherical basis jm� �P

nl am
nljnlm� and accounting for the fact that each jm�

state is, in general, dominated by a single spherical con-
figuration jnlm�, one obtains the transition amplitude

�m0jl̂6jm� � 7dm0,m61

q
l�l 1 1� 2 m�m 6 1� . (5)

Clearly, the main contribution to the transition amplitude
comes from orbits with high angular momentum l and
small magnetic quantum number m. On the other hand,
orbits with high l values are present only in heavy
clusters, hence the enhancement of the M1 strength. At
FIG. 3. Ratios between SRPA energy centroids (top) and M1
strengths (bottom), summed over 0–1 eV, and the correspond-
ing schematic estimates [Eqs. (1) and (2)] for charged (stars)
and neutral (triangles) clusters with Ne �14, 18, 26, 34, 118,
278, and 294.

the same time, as the sizes of the cluster increase with
consequent increment of the number of high values of
l, the density of the particle-hole �p-h� levels increases
and their relative spacings decrease, causing an overall
downward shift and a more pronounced fragmentation
of the M1 strength. The above formula enables one
to sharpen the geometrical picture of the mode. Since
most of the strength comes from orbits with high l and
small m values, it follows that the oscillatory rotational
motion is promoted mainly by the orbits which are almost
orthogonal to the equatorial plane.

In light clusters the M1 transition is promoted mainly by
one or two configurations. Indeed, the left and right peaks
are due by more than 95% to the p-h components [200]-
[211] and [202]-[211] in Na1

15, [312]-[321] and [310]-[321]
in Na1

27, and [321]-[310] and [321]-[312] in Na1
35, having

adopted the Nilsson-Clemenger notation NnzL [11] for
the single-particle orbitals. The reason for the small p-h
admixture induced by the residual interaction is simple.
The p-h configurations are very few and far apart in
energy. The only observable effect of the interaction is
therefore a shift of the M1 strength. We may therefore
conclude that in light nuclei the M1 mode has the character
of a single-particle excitation. Only in heavy clusters does
the collective nature of the mode appear evident.

Figure 2 shows the M1 and E2 responses of Na1
119 over

a much wider energy interval. For a more homogeneous
comparison, we give the photoabsorption cross sections,
59
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s�M1, m � 1� �
P

B�M1, m � 1�v and s�E2, m �
1� �

P
B�E2, m � 1�v3, rather than the strengths.

The M1 spectrum is composed of several,
roughly equally spaced, resonances, enveloping closely
packed transitions, coming, respectively, from DN �
0, 2, 4, . . . , p-h excitations. The group of DN � 0 tran-
sitions correspond to the low-lying M1 mode predicted
in the schematic model [1]. The others have no classical
counterpart. This large scale fragmentation drastically
limits the extent of validity of approaches which rely
entirely on sum rules. It is worth noting, on the other
hand, that the cross section, being proportional to the
energy weighted M1 strength, magnifies the high-energy
transitions. Had we plotted the M1 strength, we would
have observed a most prominent peak positioned in
the lowest-energy region and several others, much less
pronounced, at higher energy. It is also to be pointed out
that the high-energy peaks which are physically relevant,
namely, the ones below the ionization threshold (which
is 3.8 eV in light clusters and 3.2–3.4 eV in the heavier
ones), overlap mostly with the dipole plasmon resonance
and, therefore, are hardly detectable.

The lower panel of Fig. 2 shows that, consistent with the
HO relation (4), the E2 strength covers the same energy
regions of the M1 strength. It is, however, dominant over
the M1 transition only in the intermediate region, which is
in any case the domain of the dipole plasmon resonance,
and almost absent in the low-energy region. This latter
interval is exclusively covered by the M1 mode, consistent
with the predictions of the schematic model.

A more quantitative comparison with this model is
presented for the low-energy mode in Fig. 3. Although the
schematic Eqs. (1) and (2) were derived for neutral clusters
only, we considered both charged and neutral clusters.
Indeed, the results change very little in moving from one
kind to the other. The energy centroids of the low-energy
M1 transitions scale with deformation and the number of
valence electrons basically according to the law derived in
the schematic model [1]. The summed M1 strength scales
according to the schematic law only in heavy clusters, but
fluctuates strongly in the light ones. These fluctuations
reflect the single-particle nature of the transitions and,
in principle, invalidate the schematic model for clusters
of these sizes. The low-lying M1 strength is of order
of the semiclassical estimates and even larger in light
clusters. Moreover, this strength summed in the interval
1–6 eV exceeds systematically (up to 10%–100%) the
estimate (2). This looks surprising since in the schematic
model the mode gets the total M1 strength by construction.
This apparent paradox is solved if we recall that the
semiclassical calculation of the strength is fully equivalent
to its RPA evaluation in the DN � 0 HO space. Because
of the degeneracy of the l configurations in the DN � 0
HO space, a given state jNnzL� �

P
l a

nzL
Nl jNlL� is not

dominated by a single configuration jNlL�, but involves
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contributions of all orbits with comparable amplitudes
a

nzL
Nl . The resulting M1 transition amplitude does not get

its main contribution from the orbits with largest angular
momentum, as in our case, but is an algebraic weighted
sum of different contributions (with small weights) from
all configurations, with both large and small l values, hence
the enhanced M1 strength produced by our calculations.

The main results of our RPA calculation are (i) the M1
strength, at least in heavy clusters, is not concentrated only
at low energy, as predicted by the schematic model, but
spreads over a large energy region among equally spaced
peaks corresponding to DN � 0, 2, 4 . . . , p-h transitions.
(ii) In spite of that, closely packed M1 transitions still
fall at low energy and carry an overall strength which
is comparable to the value predicted in the schematic
collective model. Such a strength can become huge in
heavy clusters. It can reach the impressive value of (350–
400)m2

b already at Ne � 300. (iii) The energy centroid
of these transitions scales with the deformation and the
number of valence electrons as in the schematic model
only in heavy clusters. In the light ones, the strong
fluctuations of the summed M1 strength invalidate the
schematic model. (iv) The crucial role of the quadrupole
field in promoting the M1 mode is confirmed by the close
correlation established quantitatively between M1 and E2
modes. While however the E2 strength is concentrated
mostly in the uninteresting region covered by the plasmon
dipole resonance, the M1 is the only dominant mode at
low energy with a strength which becomes huge in heavy
clusters. These properties render the mode accessible to
experiments. Its occurrence not only would indicate the
onset of deformation but would enable one to measure the
deformation itself by exploiting the scaling properties of
the centroids with deformation and with the sizes of the
clusters.
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