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Low-Energy Quasiparticle States near Extended Scatterers in d-Wave Superconductors
and Their Connection with SUSY Quantum Mechanics
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Low-energy quasiparticle states, arising from scattering by single-particle potentials ind-wave
superconductors, are addressed. Via a natural extension of the Andreev approximation, the idea that
sign variations in the superconducting pair potential lead to such states is extended beyond its original
setting of boundary scattering to the broader context of scattering by general single-particle potentials,
such as those due to impurities. The index-theoretic origin of these states is exhibited via a simple
connection with Witten’s supersymmetric quantum-mechanical model.

PACS numbers: 74.62.Dh, 03.65.Sq, 11.30.Pb, 74.72.–h
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In the present Letter we shall explore the low-energ
quasiparticle states available ind-wave superconductors
due to the presence of an extended scatterer such a
boundary or an impurity more than a few Fermi wave
lengths across. In the context of boundary scattering, su
states represent an important signature of sign variatio
of the superconducting order parameter, as they have b
shown to originate in the possibility of scattering betwee
momentum orientations that are subject to supercondu
ing pair potentials of differing sign. The main aims of ou
work are to extend the idea that sign variations in the sup
conducting pair potential lead to low-energy quasipartic
states to the context of scattering by general single-parti
potentials, such as those due to impurities (i.e., beyo
scattering by boundaries), and to explore the robustn
of this effect.

The theoretical framework that we shall adopt is th
semiclassical approach to the quantum-mechanical pr
lem of scattering from the single-particle potential, vi
which the eigenvalue problem at hand reduces to a fam
of effectively one-dimensional problems for the particle
hole dynamics in the presence of the superconducting p
potential. Through this approach, we shall be able to s
that the density of low-energy quasiparticle states (DO
is determined solely by theclassical scattering proper-
ties of the single-particle potential and, furthermore, th
this DOS is insensitive to any suppression of the pair p
tential that the impurity might cause. This approach al
provides us with a framework for classifying and calcu
lating corrections to the DOS at low energies, such
those due to diffraction during scattering from the singl
particle potential itself, or due to any pair-potential mod
fications beyond mere suppression (such as the induct
of any out-of-phase components of the pair potential).

Along the way, we shall discuss the fact that the emer
ing one-dimensional eigenproblem is a realization
Witten’s supersymmetric quantum-mechanical mod
[1,2] which, via the Witten index [1,2], provides a natura
setting in which to explore zero-energy states [3,4
Through this identification with Witten’s model we shal
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see that the conditions under which zero-energy sta
exist are indeed those mentioned above, viz., propagat
between pair potentials of differing signs. In addition, w
shall examine the role played by the semiclassical appro
mation to the scattering problem vis-à-vis the existen
of zero-energy states, and thus see how it is that go
beyond this semiclassical approximation introduces tra
sition amplitudes between classical scattering trajectori
causing the dispersion of the formerly zero-energy stat
e.g., into one or more low-energy peaks in the DOS.

We stress at the outset that the issue of the origin of t
low-energy states, viz., sign changes in the pair potent
has already been soundly understood and extensively
veloped theoretically in several contexts: notable examp
include the works of Buchholtz and Zwicknagl [6] on
p-wave superconductors near surfaces, and of Hu [
Buchholtzet al. [7], and Fogelströmet al. [9] on d-wave
superconductors near flat surfaces. Low-energy sta
have also received extensive experimental attention in
context of boundary scattering in high-temperature sup
conductors. In particular, measurements of the (mac
scopic) tunneling conductance [10] reveal a zero-bi
anomaly indicating the existence of low-energy stat
near boundaries.

Apart from the effects of flat boundaries, theoretical r
search on low-energy quasiparticle resonances ind-wave
materials has mostly been concerned with the effects
pointlike impurities (i.e., impurities for which the size of
the impurity is not much larger than the Fermi waveleng
lF). Of particular interest has been the effect of the im
purity strength on the energies and wave functions of t
resonances [11,12]. More recently, attention has be
paid to the effects on these resonances of impuri
induced suppression of the superconducting order p
rameter [13,14]. Emerging from this body of work is
a picture in which each strong, pointlike impurity give
rise to a low-energy resonance. This resonance, wh
would show up in the tunneling DOS as a pair of pea
symmetrically located around zero energy, transforms
the particle-hole symmetric case) into a single, margin
© 1999 The American Physical Society 5571
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bound state at zero energy in the unitary scattering limit.
As the impurity strength is reduced, the energy of this
resonance moves towards the gap maximum. Moreover,
the quantitative details of the band structure and/or order
parameter can play important roles [15]. In particular, in
particle-hole asymmetric systems the energies of the reso-
nances no longer tend to zero in the unitary limit.

In contrast, the present work suggests that an extended
(rather than pointlike) impurity induces a zero-energy peak
in the DOS with a weight of order the linear size of the
impurity (measured in units of the Fermi wavelength).
Moreover, the resulting low-energy DOS is much less
sensitive to details such as the precise form of the band
structure and any in-phase order parameter variations,
i.e., the peak at zero energy is inert. In this respect,
extended impurities behave more like flat boundaries than
like pointlike impurities.

The theoretical distinctions between pointlike and ex-
tended impurities raised here have, to some extent, been
addressed experimentally via scanning tunneling spec-
troscopy on Bi2Sr2CaCu2O8 surfaces [16,17]. Work on
native defects [16,17], which often appear to be essen-
tially pointlike in STM imaging, yield weak signatures
in the (smeared, local) DOS near each defect. Such sig-
natures can each be interpreted as being induced by a
pointlike impurity that yields a resonance of unit weight.
In contrast, the artificially induced defects described in
Ref. [16], which appear to be more extended in STM
imaging, show much stronger signatures in the DOS. This
is consistent with the idea that extended impurities pro-
duce many states, as the present work indicates.

Bogoliubov–de Gennes eigenproblem.—We regard the
single-quasiparticle excitations as being described by the
Bogoliubov–de Gennes (BdG) eigenproblem [18,19]µ

ĥ D̂

D̂y 2ĥ

∂ µ
u
y

∂
� E

µ
u
y

∂
, (1)

where the components u�x� and y�x� of the energy
eigenstate, respectively, give the amplitudes for finding an
electron and a hole at the position x, E is the en-
ergy eigenvalue, and ĥ � 2=2 2 k2

F 1 V �x� is the
one-particle Hamiltonian, in which k2

F is the chemical po-
tential [i.e., kF (� 2p�lF) is the Fermi wave vector] and
V is the single-particle potential. We have adopted units
in which h̄2�2m � 1, where m is the (effective) mass of
the electrons and holes. The operator D̂ (which should
ultimately be determined self-consistently) is the pair-
potential (integral) operator, whose action on the wave
functions is specified by the (nonlocal) kernel D�x, x0� via
�D̂y� �x� �

R
dx0 D�x, x0�y�x0�. We assume that suf-

ficiently far from the scatterer D returns to the value
5572
that characterizes the bulk superconductor (e.g., s-wave,
d-wave, mixed, etc.). As we shall see below, our compu-
tation of the low-energy DOS is insensitive to the precise
form of any suppression of the superconducting order
induced by the single-particle potential, and therefore
continues to hold when D is replaced by its self-consistent
value. However, as we shall also see below, induced
modifications of the superconducting order parameter that
go beyond simple suppression in a manner that causes lo-
cal supercurrents (i.e., via the addition of any intrinsically
out-of-phase component to D) spoil this robustness.

Andreev’s approximation for a strong single-particle
potential.—To analyze the BdG eigenproblem we first
apply a semiclassical approximation, which reduces the
full problem to a family of first-order differential eigen-
problems labeled by the classical trajectories of a particle
at the Fermi energy in the presence of the full single-
particle potential. This amounts to extending the Andreev
approximation to situations in which there is a single-
particle potential whose energy scale V0 is not negligible
compared with the Fermi energy. In technical terms,
we are making an asymptotic approximation valid when
k2

F ¿ �D0, E�, V0 � k2
F , and V �x� is slowly varying rela-

tive to lF . To implement this approximation we consider
the semiclassical solution of

�2=2 2 k2
F 1 V �x�� �A�x�eikFS�x�� � 0 , (2)

i.e., the “ large” part of the BdG eigenproblem, where both
A�x� and S�x� are taken to be slowly varying (with
respect to lF) [20]. By retaining the first and second
powers in kF we obtain, from Eq. (2), the Hamilton-
Jacobi equation j=S�x�j2 � 1 2 k22

F V �x� and the conser-
vation condition = ? �A�x�2=S�x�� � 0. We then use
the resulting semiclassical solution, which is specified
in terms of the incoming momentum orientation n via
the asymptotic behavior S�x; n� � n ? x [21] (for x far
from the scattering center) and includes all of the fast
(i.e., order of lF) variations of the exact BdG eigen-
functions, to perform a generalized separation of rapidly
and slowly varying components by writing ���u�x�, y�x���� as
A�x�eikFS�x;n����ū�x�, ȳ�x����, where ū and ȳ are assumed
to be slowly varying relative to lF . Then, by insert-
ing this form into Eq. (1) we obtain �ĥ�AeikFSū�� �x� �
22ikFA�x�eikFS�x;n��=S� ? �=ū�.

We now turn to the “small” part of the BdG eigenprob-
lem, which involves the off-diagonal integral operator D̂.
It is convenient to transform to relative and center-of-mass
coordinates, r and R: D̄�r, R� � D�x, x0�, r � x 2 x0,
and 2R � x 1 x0. Then the action of D̂ can be asymp-
totically approximated (for k2

F ¿ D0) as
�D̂�AeikFSū�� �x� �
Z

dr D̄�r, x 2 r�2�ū�x 2 r�2�A�x 2 r�2�eikFS�x2r�2;n� � �A�x�eikFS�x;n��ū�x�Deff�x; n� ,

(3a)

Deff�x; n� �
Z

dr D̄�r, x 2 r�2�A�x�21A�x 2 r�2� exp�ikFS�x 2 r; n� 2 ikFS�x; n�� , (3b)
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provided we assume that ���ū�x�, ȳ�x���� varies much more
slowly than lF . Thus the task of solving the full BdG
eigenproblem (1) is reduced to the task of solving the
(classical) Hamilton-Jacobi equation, along with the (2 3

2) first-order partial differential eigenproblemµ
22ikF=S ? = Deff�x; n�

D
�
eff�x; n� 2ikF=S ? =

∂ µ
ū
ȳ

∂
� E

µ
ū
ȳ

∂
. (4)

In fact, the eigenproblem is an ordinary rather than
a partial one. To see this, recall the element of the
Hamilton-Jacobi theory in which one establishes that the
solution S of the Hamilton-Jacobi equation (at least for
classically allowed regions) is indeed the action computed
along the classical trajectory xc�?� that solves Newton’s
equation k2

F≠2
sxc�s� � 2=V �xc� subject to the condition

j≠sxc�s�j ! 1 as s ! 6` (so that the classical motion is
at the Fermi energy). Owing to this connection between
=S and �xc, Eq. (4) can be rewritten as [20]

Ĥ

µ
ū
ȳ

∂
� E

µ
ū
ȳ

∂
, Ĥ �

µ
22ikF≠s Deff�s�
D

�
eff�s� 2ikF≠s

∂
,

where Deff�s� is defined to be Deff���xc�s�; n���. This
family of first-order ordinary differential eigenproblems
is parametrized by n and the impact parameter b, which
uniquely specify the classical trajectory xc�?� from among
those having energy k2

F .
Zero-energy states.—To search for zero-energy states

it is useful to reduce the eigenproblem via the following
sequence of steps. We apply the unitary transformation
(in electron-hole space) Û � �1�

p
2 � � 1

i
1

2i �, under which

Ĥ ! Ĥ 0 � ÛyĤÛ �

µ
0 Â

Ây 0

∂
, (5a)

Â � 22ikF≠s 2 iDeff�s� ,

Ây � 22ikF≠s 1 iDeff�s� . (5b)
We emphasize that it is not possible to arrive at this struc-
ture for values of Deff that are intrinsically complex (i.e.,
cannot be made real by an elementary gauge transforma-
tion), as is the case, e.g., for supercurrent-carrying states.
The virtue of the structure of Eqs. (5a) and (5b) is that it
allows us to recognize that zero-energy eigenfunctions of
Ĥ 0 have the form �w1

0 � or � 0
w2

�, where the functions w6

obey �2kF≠s 7 Deff�w6 � 0, provided they exist (i.e.,
are normalizable). Owing to their first-order nature, these
(zero-energy) eigenproblems may readily be integrated
to give w6�s� ~ exp 6�2kF�21

Rs ds0 Deff�s0�. However,
the ability to normalize w6, and therefore the existence
of zero-energy eigenvalues, depends on the form of Deff
via the limiting values D6 � lims!` Deff�6s� for a given
semiclassical path xc�?� [22]. Specifically, for semiclas-
sical paths for which D1D2 is negative, one or the other
(but not both) of w6 is normalizable and, therefore, for
such paths provide precisely one zero-energy eigenvalue.
On the other hand, for semiclassical paths for which
D1D2 is positive, neither of w6 is normalizable, and
therefore such paths provide no zero-energy eigenvalues.

This diagnostic for when semiclassical paths lead to
zero-energy states allows us to assemble the zero-energy
contributions to the DOS. If, for the sake of concreteness,
we restrict our attention to two-dimensional systems, then
our approximation to the low-energy DOS has the form

rSC�E� � d�E�
kF

2p

Z
dn db�1 2 sgnD1 sgnD2� . (6)

This formula should have corrections, which vanish as E
tends to zero, coming from the nodes in the gap of the
homogeneous d-wave state, as well as suppression of the
superconducting state near the impurity.

Let us now highlight some features related to Eq. (6):
(i) The evaluation of Eq. (6) requires only knowledge of
the classical scattering trajectories for V . (ii) The DOS
peak is located at zero energy. Corrections to this result,
owing inter alia to particle-hole asymmetry, are of relative
order max�1�kFR, D0�k2

F� (where R is the characteristic
linear extent of the impurity potential). These corrections
lead to the splitting and dispersion of the zero-energy peak.
(iii) Only the signs of Deff associated with the directions
of the momentum asymptotically far from the impurity are
featured in Eq. (6); the DOS is unchanged by deformations
of the pair potential, provided the asymptotic signs are
preserved and no out-of-phase components are induced.
(iv) The degeneracy of the zero-energy level, and hence the
weight of the zero-bias STM peak, is proportional to the
typical impurity scattering cross section (more precisely, of
order R�lF), the exact weight depending on the form of
V . (v) For a sparse collection of (extended) scatterers (i.e.,
scatterers resolvable at the scale kF�D0) their contributions
to the DOS are roughly additive; for a dense collection (i.e.,
for nearly overlapping impurity potentials) the contribution
scales with the linear size of the collection.

Connection with Witten’s model of supersymmetric
quantum mechanics and index theory.—Having seen,
within the context of an explicit computation, the emer-
gence (or otherwise) or zero-energy states, we now
discuss the structure that underlies this issue, namely,
index theory [5]. The relevant aspect of index theory is
Witten’ s index from Witten’ s model of supersymmetric
quantum mechanics (SUSY QM). The specific connec-
tion is as follows: Ĥ 02 [c.f. our (5a)] is Witten’ s SUSY
Hamiltonian; Deff [our (3b)] is Witten’ s SUSY potential;
A and Ay [our (5b)] are proportional to Witten’ s annihila-
tion and creation operators. Indeed, the analysis leading
from Eq. (5a) to the conditions for the existence of a zero-
energy state mirrors the standard SUSY QM analysis.

In SUSY QM, an important tool is the Witten index,
i.e., the number of zero-energy states of the form � 0

w2
�

minus the number of the form � w1

0 �. If the Witten index
is nonzero then there certainly are zero-energy states (i.e.,
SUSY is good; see, e.g., Ref. [2], Sec. 2.1). If the Witten
index is zero then there may or may not be zero-energy
states, as contributions may cancel. In the present context,
we are not prima facie concerned with the Witten index
and its properties, but rather with ascertaining the number
of zero-energy states. However, owing to the fact that
there is at most one zero-energy state for any semiclassical
5573
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trajectory (because the normalizability condition cannot
be simultaneously satisfied by both w1 and w2) the
(modulus of the) Witten index does indeed permit the
counting of the zero-energy states.

Discussion and outlook.—The condition on the ex-
istence of zero-energy states, together with Eq. (3b),
provides us with a way of calculating the DOS at low
energies by a simple counting of the number of classi-
cal trajectories that start and end with different signs of
the superconducting pair potential [see Eq. (6)]. Thus, the
DOS at low energies depends only on the classical scat-
tering properties of the single-particle potential.

As we have stressed earlier, this result is valid in the
regime in which the single-particle potential is both spa-
tially extended and strong and the pair potential is much
smaller than the Fermi energy. Before turning to a dis-
cussion (and classification) of the generic corrections to
this result for the DOS, which arise upon the relaxation
of these conditions, we remark that the foregoing approxi-
mation scheme and results also hold for spatially extended
single-particle potentials that are weaker than the Fermi
energy. Moreover, in the regime V0 & D0 our results can
be extended to the case of rapidly varying single-particle
potentials (such as are due to pointlike impurities). How-
ever, as the strength of the single-particle potential is di-
minished, the classical trajectories tend towards straight
lines and, hence, the number of trajectories that “ see”
different signs of the pair potential is reduced. This re-
sults in a corresponding decrease in the degeneracy of the
zero-energy level, in accordance with formula (6). In-
deed, for V0 & D0 the trajectories are essentially straight
lines. Thus, there would be no zero-energy states, but ad-
ditional resonances (due to the impurity) may arise if the
pair potential is suppressed.

By contrast, in the regime V0 � k2
F but V �x� rapidly

varying (e.g., for strong, pointlike impurities), the approxi-
mation scheme that enabled us to reduce the problem to
a family of one-dimensional eigenproblems breaks down,
due to the fact that the previously neglected =A term
becomes comparable to previously retained =S term. The
former term introduces diffraction effects in the (quantum-
mechanical) scattering from the single-particle potential, as
well as tunneling through the classically forbidden region.
These effects can be viewed as consequences of nonzero
transition amplitudes between states associated with the
classical trajectories, and would result in the dispersion of
the previously degenerate zero-energy states.

Let us conclude by remarking that the presence of an
extended-impurity induced subdominant component to the
pair potential, provided it is in phase with the dominant
component, would not change the picture presented here:
specifically, formula (6) would continue to hold. On the
other hand, if an out-of-phase component is induced (i.e.,
time-reversal symmetry is locally broken, as would be the
case, e.g., if the state were locally to become d 1 is),
this would cause the zero-energy peak in the DOS to split
into two peaks of nonzero width [9,10], symmetrically
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located about zero energy, their line shapes depending on
the full (rather than solely the asymptotic) details of the
pair potential and computable via perturbation theory. If
observed (and provided other sources of splitting such as
diffraction effects can be ruled out), such a splitting would
provide strong evidence for extended-impurity induced
local time-reversal symmetry breaking.
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