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Luttinger Liquid Behavior in Multiwall Carbon Nanotubes
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The low-energy theory for multiwall carbon nanotubes including the long-ranged Coulomb interactions,
internal screening effects, and single-electron hopping between graphite shells is derived and analyzed
by bosonization methods. Characteristic Luttinger liquid power laws are found for the tunneling density
of states, with exponents approaching their Fermi liquid value only very slowly as the number of con-
ducting shells increases. With minor modifications, the same conclusions apply to transport in ropes of
single-wall nanotubes.

PACS numbers: 71.10.Pm, 71.20.Tx, 72.80.Rj
Metallic carbon nanotubes constitute a novel and excit-
ing realization of one-dimensional (1D) conductors [1,2].
The strong electronic correlations observed experimentally
[3] pose many challenges to theorists. It is well known that
electron-electron interactions invalidate the Fermi liquid
description in one dimension. Often 1D conductors can
instead be described as a Luttinger liquid (LL) at low-
energy scales. The theoretical prediction [4,5] of LL be-
havior in a single-wall nanotube (SWNT) has indeed been
verified in a recent transport experiment [6]. Furthermore,
pronounced interaction effects have been observed for an
individual multiwall nanotube (MWNT) composed of sev-
eral (typically 10 to 20) concentric graphite shells [7,8],
most notably a pronounced zero-bias anomaly at low ap-
plied voltage, which was tentatively interpreted in terms of
LL theory. Since MWNTs are much easier to manipulate
than SWNTs, interaction effects might be useful for appli-
cations, and whether a MWNT can display LL behavior
could then be of practical importance. Similar questions
apply to an individual bundle (“rope”) of SWNTs, the sys-
tem actually studied in Ref. [6].

In this Letter, the low-energy theory of an individual
MWNT composed of N metallic graphite shells [9] with
radii R1 , R2 , · · · , RN is derived, taking into account
the externally unscreened Coulomb interaction, internal
screening effects, and intershell electron tunneling. Semi-
conducting shells and an insulating substrate are incorpo-
rated in terms of a space-dependent dielectric constant.
The theory holds for energy scales kBT , eV ø y�RN

[we set h̄ � 1], where y � 8 3 105 m�sec is the radius-
independent Fermi velocity; for RN � 10 nm, y�RN �
350 meV. One then needs to take into account only two
transport bands a � 6 per shell. For both bands, there is
a right- and a left-moving �r � 6 � R�L� branch with
linear dispersion. By employing bosonization methods
[10], pronounced LL effects are predicted for a MWNT,
with only a slow crossover to Fermi liquid behavior as
N increases. The relation between experimentally mea-
surable exponents and microscopic quantities turns out to
be quite different from a SWNT.
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Unfortunately, little is known about the role of lattice
defects and structural inhomogeneities in MWNTs. How-
ever, experiments [7,11] are consistent with elastic mean-
free paths of up to a few mm, and molecular-mechanics
simulations [12] have demonstrated that MWNTs remain
rigid and structurally uniform even on a substrate. The
model studied below should thus provide at least a quali-
tative understanding of interaction effects in MWNTs.

The construction of the low-energy theory starts by ex-
panding the electron operator for spin s � 6 on shell
n � 1, . . . , N using the Bloch waves,

Csn�x, y� �
X
ra

fran�x,y�crasn�x� , (1)

where 0 , y , 2pRn, and x is the transport direction.
The Bloch waves depend on the helicity of each shell,

fran�x,y� � �2pRn�21�2 exp�ia�kF,nx 1 pF,ny�� . (2)

The expansion (1) allows one to formulate the theory in
terms of 1D fermion operators crasn�x�. Without interac-
tions and intershell tunneling, the linear dispersion implies
N copies of a 1D massless Dirac Hamiltonian,

H0 � 2iy
Z

dx
X

rasn
rcy

rasn≠xcrasn . (3)

In the next step, let us include the Coulomb interactions
among the electrons. Backscattering is neglected for rea-
sons explained below. Since one is normally off half filling
due to the presence of external gates, umklapp scattering
is also ignored. Under the expansion (1), the important
forward scattering processes yield

HI �
1
2

NX
n,m�1

Z
dx dx0 rn�x�Vnm�x 2 x0�rm�x0� , (4)

with 1D densities rn �
P

ras cy
rasncrasn for the nth

shell. The effective 1D interaction potential is obtained
from the externally unscreened 3D Coulomb potential by
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integrating over the circumferential coordinates using the
Bloch functions (here a is a lattice spacing),

Vnm�x� �
e2

knm

Z 2p

0

dw
2p

dw0

2p
�a2 1 �Rn 2 Rm�2

1 x2 1 4RnRm

3 sin2��w 2 w0��2��21�2.

The dielectric constants knm include the effect of the sub-
strate and of semiconducting shells. The Fourier transformeVnm�k� at long wavelengths, jkRN j ø 1, is

eVnm�k� �
2e2

knm
j ln�jkjR̄nm�j , (5)

with the “mean radius”

R̄nm � exp
Z 2p

0

dw
4p

ln���Rn 2 Rm��2�2 1 RnRm sin2w� .

The logarithmic singularity of eVnm�k ! 0� reflects the un-
screened 1�r tail of the Coulomb interaction. In order to
make contact with the usual LL concept, we restrict our-
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selves to a long-wavelength description by cutting off this
singularity at k � 2p�L, where L is the MWNT length
[13]. Including a factor 4�py for later convenience, this
leads to the dimensionless coupling constants

Unm �
8e2

pyknm
ln�L�2pR̄nm� . (6)

For L � 1 mm, R̄nm � 6 nm, and knm � 1.4, Eq. (6)
yields Unm � 16. Therefore both the intrashell and
the intershell electrostatic interactions are typically very
strong and of comparable magnitude. Because of the weak
logarithmic dependence of Unm on R̄nm, the approxima-
tion Unm � U can already yield sensible results. Similar
reasoning applies to ropes of SWNTs, where, however,
geometrical considerations suggest that Unm 	 U may
not be justified anymore. Nevertheless, the logarithmic
singularity (6) and hence the same order of magnitude for
Unm are also expected for ropes.

By virtue of bosonization, H0 1 HI can now be diago-
nalized. The bosonized 1D fermion operator is [10]
crasn�x� �
hrasnp

2pa
exp�iqFrx 1 i�p�4�1�2�uc1,n 1 rwc1,n 1 auc2,n 1 rawc2,n 1 sus1,n 1 rsws1,n

1 asus2,n 1 rasws2,n�� , (7)
where symmetric and antisymmetric linear combinations
of the two transport bands a � 6 have been formed for
charge and spin degrees of freedom. The resulting four
channels are labeled by the index g � �c1, c2, s1, s2�.
The boson phase fields obey the commutator algebra

�ug,n�x�,wg0,n0�x0�� � 2�i�2�dnn0dgg0 sgn�x 2 x0� ,

so that wg,n has the canonical momentum Pg,n �
2≠xug,n. The Majorana fermions hrasn ensure anticom-
mutation relations between 1D fermions with different
indices rasn. Finally, qF � EF�y is determined by
external gate voltages, where the Fermi energy EF and
hence qF are identical for all N shells [14]. Using Eq. (7),
the density is rn�x� � �4�p�1�2≠xwc1,n, and as a conse-
quence the Hamiltonian decouples in all four channels,
H0 1 HI �

P
g Hg . The charged channel is described by

Hc1 �
y

2

NX
n,m�1

Z
dx ��P2

c1,n 1 �≠xwc1,n�2�dnm

1 Unm≠xwc1,n≠xwc1,m� . (8)

The three neutral channels correspond to Eq. (8) with
Unm � 0. Diagonalizing Hc1 then leads to an eigenvalue
problem similar to the one studied by Matveev and
Glazman [15] for many-channel quantum wires,

NX
m�1

��1 2 g22
j �dnm 1 Unm�Gmj � 0 , (9)

where wc1,n�x� �
P

j GnjFj�x� and Gnj is an orthogonal

matrix. With the new fields Fj and their momenta ePj ,
Hc1 takes a standard LL form,

Hc1 �
y

2

NX
j�1

Z
dx � eP2

j 1 g22
j �≠xFj�2� . (10)

The LL interaction constants gj # 1 for the N eigenmodes
measure the correlation strength.

It is then easy to determine all scaling exponents of
interest. The exponents hb�e of the tunneling density of
states (TDOS), r�E� 
 Eh , for tunneling of an electron
into the outermost shell �n � N� in the bulk or close to
the end of the tube are

hb �
1
8

NX
j�1

G2
Nj�g21

j 1 gj 2 2� , (11)

he �
1
4

X
j

G2
Nj�g21

j 2 1� . (12)

These exponents govern the power laws G 
 Th of the
temperature-dependent linear conductance for tunneling
into the MWNT and can be measured in the experimen-
tal setup of Ref. [7], where external leads contact only the
outermost shell of the MWNT. Moreover, in the limit of
weak disorder backscattering, the linear conductance cor-
rections dG 
 T2p are characterized by the exponent

p �
1
2

X
j

G2
Nj�1 2 gj� . (13)

At sufficiently low temperatures, disorder in a LL always
leads to a strong backscattering situation. The conduc-
tance then vanishes as Tb for T ! 0, where b � 2he.
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Observation of the exponents p and b requires good con-
tacts between external leads and the MWNT.

To elucidate the qualitative features, we now solve
Eq. (9) for Unm � U. The eigenvalues are

g1 � g � �1 1 NU�21�2, g2,...,N � 1 . (14)

The first has eigenvector Gn1 � N21�2 and is identified
with the standard collective LL plasmon mode, now
with an N-dependent LL parameter g. The remaining
N 2 1 degenerate modes correspond to Fermi liquid
quasiparticles. Using

P
j.1 G

2
Nj � 1 2 1�N , the above

exponents read hb � �g21 1 g 2 2��8N , he � �g21 2

1��4N , and p � �1 2 g��2N . For N ! `, the expo-
nents hb,e and b approach zero (the Fermi liquid value)
only as N21�2, because the LL parameter g also goes to
zero as N21�2 (up to logarithmic corrections). For in-
stance, for U � 16 and N � 10 the exponents are he �
0.292 and hb � 0.135, while the SWNT values are
he � 0.780 and hb � 0.295. On the other hand, the
exponent p scales as 1�N for large N and hence vanishes
more rapidly. For instance, for N � 10 it is p � 0.046,
but for N � 1 we get p � 0.379. LL power laws in
MWNTs or ropes of SWNTs are thus generally much
more pronounced for the TDOS than for the backscat-
tering corrections in the presence of weak disorder. This
important fact may be used to obtain information about
the number N of conducting shells.

The result (13) holds for defects in the Nth shell. More
generally, a lattice defect at x � 0 in the Mth shell leads
to Himp � l

Q
g cos�

p
p wg,M�0��. The exponent p in

Eq. (13) is then replaced by pM �
1
2

P
j G

2
Mj�1 2 gj�.

In marked contrast to a Fermi liquid, a defect in an inner
shell leads to a reduction of the conductance through the
outermost shell, dG 
 T2pM , by a modification of the
internal screening properties.

Next single-electron hopping between the shells is in-
corporated. Using Eq. (2), it can be written as

Ht �
NX

n,m�1

Tnm

Z
dx

X
ras

e2ia�kF,n2kF,m�xcy
rasncrasm ,

(15)

where the hopping matrix acts only between nearest-
neighbor shells, Tnm � 2tndn11,m 2 tn21dn,m11. Pro-
cesses where ras-type fermions are scattered into
different ras states are suppressed against Eq. (15) by
momentum conservation and by higher scaling dimen-
sions. If there is a Fermi-momentum mismatch, kF,n fi

kF,n11, intershell coherence is strongly reduced by the
oscillatory factor, and the respective (irrelevant) hopping
tn should not enter the matrix Tnm. Renormalization
group (RG) arguments suggest that Ht can be relevant,
and therefore we go back and first diagonalize H0 1 Ht .
With the orthogonal matrix Qnn ,

crasn�x� �
NX

n�1

Qnn
ecrasn�x� , (16)
the rotated fermions ecrasn again obey the 1D Dirac
Hamiltonian (3). Denoting the N eigenvalues of Tnm

as Tn , the respective eigenvectors span Qnn so that
Ht �

P
n Tn

R
dx ern�x�, with 1D densities ern �

P
ras 3ecy

rasn
ecrasn . The interactions now read

HI �
py

8

X
n1n2n3n4

Yn1n2n3n4

X
ras,r 0a0s0

Z
dx

3 ecy
rasn1

ecrasn2
ecy

r 0a0s0n3
ecr 0a0s0n4 , (17)

with matrix elements

Yn1n2n3n4 �
X
nm

UnmQn1nQnn2Qn3mQmn4 . (18)

The complicated four-fermion interactions (17) reflect the
difficulties encountered in previous studies of coupled LLs
[10]. According to Eq. (6), however, in MWNTs the cou-
plings Unm are approximately equal, which allows one to
make further progress.

For Unm 	 U, the dominant matrix elements in
Eq. (18) are Ynnn0n0 � Wnn0 � Wn0n . In fact, if Unm �
U, orthogonality of Qnn implies that Wnn0 � U and
all other matrix elements vanish. Keeping only the
couplings Wnn0 , Eq. (17) simplifies to HI � �py�8� 3P

nn0 Wnn0

R
dx ern�x�ern0�x�. The model H0 1 HI 1 Ht

can then be solved exactly by bosonization in the rotated
basis. Using Eq. (7) for ecrasn�x�, the neutral channels
are described by the same Hamiltonian as before. The
only change arises in the charged sector,

Hc1 �
y

2

NX
j�1

Z
dx � eP2

j 1 g22
j �≠xFj�2� 1

X
j

ejNj ,

(19)

where ej �
P

n TnGnj . The “zero modes” Nj �
�4�p�1�2

R
dx ≠xFj denote the total number of particles

in the jth eigenmode. The eigenvalues gj and the matrix
Gnj are determined from Eq. (9) with Unm being replaced
by Wnn0 . From Eq. (19), an important effect of the
hopping consists of a splitting of the N 1D transport
bands. Using

P
j Gnjej � Tn , the TDOS for tunneling

into the outermost shell is generally of the form

r�E� �
X
n

QNnQ
y
Nnrn�E 2 Tn� , (20)

where rn�E� 
 Ehn,b�e . The bulk/end exponents hn,b�e

for tunneling into the nth MWNT eigenmode are given
by Eqs. (11) and (12), respectively, with the replacement
GNj ! Gnj . For Unm � U, both exponents are inde-
pendent of n and equal the previous expressions. For
large N , and taking all tn � t, the eigenvalues of Tnm are
Tn � 22t cos�2pn�N�, with QNnQ

y
Nn � 1�N . Hence

r�E� 
 N21
P

n�E 2 Tn�hb�e , where the threshold ener-
gies Tn become narrowly spaced. In effect, for large
enough N , the LL singularities will then be smeared out
simply because subsequent thresholds are too closely to-
gether. For N � 5 10, however, different Tn should be
sufficiently well separated.
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What about the other interactions in Eq. (17)? For
Unm 	 U, the corresponding couplings are small and can
be studied using the perturbative RG. If three or four in-
dices ni are different, the resulting perturbations are al-
ways highly irrelevant since single-particle excitations for
more than two modes are involved in the scattering. The
contribution with n1 � n3 and n2 � n4 corresponds to a
simultaneous transfer of two fermions from one mode to
another, which is also an irrelevant process. The remaining
interactions are due to the scaling fields Bnn0 � Bn0n �
2Ynn0n0n . Again omitting irrelevant terms, they cause a
weak renormalization of the LL parameters in the neutral
channels [which were all equal to one before], and the mar-
ginally relevant contribution

H 0 �
y

2pa2

X
n,n0

Bnn0

Z
dx

3
Y
g

cos�
p
p �wg,n�x� 2 wg,n0�x��� 1 �cos $ sin� .

(21)

Since marginally relevant scaling fields generally lead to
exponentially small gaps for small couplings [10], the
LL model indeed describes the electronic properties of a
MWNT, except at exceedingly low-energy scales below
this gap. The predicted pseudogap in a rope [16] may be
rationalized by noting that, since there Unm 	 U is not as
accurate, the Bnn0 are presumably larger.

So far, backscattering (BS) has not been incorporated.
BS amounts to the coupling of 2kF�2qF oscillatory charge
densities on different shells. Here only the CDW-p
(charge-density wave) operators [4] need to be consid-
ered since the CDW-0 operator is not relevant. Since
symmetries present in the noninteracting case have to be
overcome, the CDW-p operators are only generated via
short-ranged interactions which in turn are reduced by a
factor a�Rn due to the doughnutlike wave functions [4].
Therefore the BS coupling between shells n and m will
carry a factor a2�RnRm. From the bosonization analysis,
BS now simply leads to a renormalization of the Bnn0

in Eq. (21). Hence the BS gap is suppressed by a factor
exp�2RnRm�a2� � exp�2100� compared to standard
quantum wires and can be safely neglected here.

Another concern is the ionic potential of other shells
acting on electrons in the nth shell. Because of different
radii and helicities, neighboring graphite lattices are gener-
ally incommensurate, and thus the ionic potential amounts
to a quasiperiodic random energy landscape. The elastic
mean-free path �n for electrons in shell n can be estimated
from a disordered tight-binding approach [17] by taking
independent random on-site energies with variance s

2
E .

This yields

�n � 2p
p

3 �V0�sE�2Rn . (22)

For an order-of-magnitude estimate of sE , the nearest-
neighbor hopping tn can be used. Since tn is typically one-
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tenth of the intratube hopping V0 [18], Eq. (22) predicts
�n�Rn � 1000. For typical MWNT lengths of the order
of 1 10 mm, transport is ballistic and the neglect of the
ionic potential is justified.

In conclusion, the low-energy theory of an individual
MWNT on an insulating substrate has been given. In-
cluding the long-ranged Coulomb interaction, pronounced
correlation effects are predicted which can be understood
in the framework of the Luttinger liquid model. Clearly,
there are many open questions to be addressed in future
work, e.g., the effects of a parallel or perpendicular mag-
netic field, or the virtual or real population of higher sub-
bands as the energy scale increases.
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