
VOLUME 83, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 27 DECEMBER1999

om

by
e free
itical
ted

ects.
Universality for 2D Wedge Wetting
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We study 2D wedge wetting using a continuum interfacial Hamiltonian model which is solved
transfer-matrix methods. For arbitrary binding potentials, we are able to exactly calculate the wedg
energy and interface height distribution function and, thus, can completely classify all types of cr
behavior. We show that critical filling is characterized by strongly universal fluctuation domina
critical exponents, while complete filling is determined by the geometry rather than fluctuation eff
Related phenomena for interface depinning from defect lines in the bulk are also considered.

PACS numbers: 68.45.Gd, 68.35.Rh
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At present, experimental methods allow the shape
solid surfaces to be controlled at a nanoscopic level [
Fluids confined by such structured substrates can exh
quite distinct adsorption characteristics compared to th
occurring for planar systems [2]. This includes new typ
of interfacial phase transitions and critical phenome
which are not only of fundamental interest but may we
play an important role in developing technologies su
as super-repellent surfaces [3], self-assembly of thre
dimensional structures [4], or microfluidics [5], amon
others [6]. An interesting example of these phenome
which has recently attracted new interest is the so-cal
filling or wedge wetting transition of a fluid adsorbe
in a wedge [7,8], formed by the junction of two fla
walls tilted at angles6a to the horizontal as shown in
Fig. 1. Thermodynamic arguments predict that a wedg
gas interface is completely filled by a liquid phase (
bulk liquid-gas coexistence) for temperaturesT . Ta ,
where the filling temperatureTa is lower than the wetting
temperatureTw of the planar (a � 0) wall [9]. In fact,
according to these macroscopic arguments, the locat
of the filling transition phase boundary is beautifull
expressed in terms of the contact angleQp �T � of the
liquid drop on the planar substrate [9],

Qp �T � � a . (1)

Thus, the liquid completely wets the wedge whe
the contact angle is smaller than the tilted anglea.
Interestingly, this macroscopic result was predicted a
confirmed experimentally [10] eight years before th
seminal paper by Cahn on wetting in planar surfaces [1

Recently, the macroscopic prediction (1) has been su
ported by mean-field analysis of a model system whi
also suggests that the qualitative order of the filling tra
sition (first-order or continuous) follows that of the plana
wetting transition [7]. Thus, for planar substrates exhib
ing critical wetting transitions, the wedge offers two ne
examples of interfacial-like critical phenomena in whic
the interface height�0 (measured from the bottom of the
wedge) diverges as the temperature and chemical poten
are varied. Borrowing from the vocabulary used for we
ting, we refer to the wedge filling transition occurring a
0031-9007�99�83(26)�5535(4)$15.00
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T ! T2
a (at bulk coexistence) ascritical filling . In con-

trast, bycomplete filling, we refer to the divergence of�0
for temperaturesT . Ta as the bulk chemical potentialm

is increased towards saturationmsat�T �. However, apart
from a few limited results available for the corner wettin
transitions (corresponding toa � p�4 and restricted to
short range forces) [12], there has been no discussion in
literature of fluctuation effects, scaling regimes and u
versality classes for such filling transitions and how the
compare with the rich phenomenology known for wettin
[13]. With this aim in mind, we have studied an effectiv
interfacial Hamiltonian model of filling in (bulk) dimen-
sion d � 2 and derived exact elegant results for vario
quantities of interest such as the excess wedge free en
and the probability distribution for the interface heigh
The formal analysis can be carried through forarbitrary
choices of binding potential (i.e., all range of forces) a
lowing a complete classification of the critical behavi
and the identification of universality classes. We w
show that both critical and complete filling transitions a
characterized by universal critical exponents independ
of the intermolecular forces (unless they are unphysica
long ranged). Interestingly, while the universality of th
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FIG. 1. Schematic illustration of an interface configuratio
y�x� in the wedge geometry. The function��x� denotes the
local distance to the wall. Other notation is defined in the te
© 1999 The American Physical Society 5535
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critical filling transition arises directly as a consequence of
strong fluctuation effects, the universality encountered at
complete filling has a geometrical and thermodynamic ori-
gin which is correctly captured by mean-field theory. In
addition to this, we are able to verify the validity of the
thermodynamic prediction (1) and also predict very simi-
lar phenomena occurring when interfaces are pinned in the
bulk along a bent line of weakened bonds.

To begin, we introduce our model. We denote the
local height of the liquid-gas interface relative to the
horizontal by y�x� and the height of the wall itself by
z�x� � ajxj. The relative local height between the two
is written ��x� � y�x� 2 z�x�. The horizontal dimension
of the wall/interface extends over the range �2X�2, X�2�
and periodic boundary conditions are applied at the ends;
i.e., all configurations satisfy y�X�2� � y�2X�2� (see
Fig. 1). The interface interacts with the wall via a binding
potential arising due to intermolecular wall-fluid and
fluid-fluid forces and is also subject to thermal fluctuations
governed by the stiffness S. We will concentrate on
continuum wall-fluid systems and identify the stiffness
S with the surface tension. We also set kBT � 1 for
convenience. For rather open edges, it is already known
from earlier mean-field studies that the filling transitions
are well described by the simple interfacial model

H� y� �
Z X�2

2X�2
dx

"
S

2

√
dy
dx

!2

1 W� y 2 z�

#
, (2)

which can be justified from analysis of a more general
nonlinear model in the small angle a limit [7]. Before we
outline our calculation and present our main results, we
make some preliminary remarks which serve to establish
our notation and also provide some points of comparison.
These concern the planar limit a � 0. For this case, it
is well known that the partition function Zp ��1, �2; X�
corresponding to the planar fluctuation sum with fixed
boundary conditions ��2X�2� � �1 and ��X�2� � �2 is
given by the spectral sum (or integral if scattering states
are present) [14]

Zp��1, �2; X� �
X̀
n�0

c�
n��1�cn��2�e2EnX , (3)

where the eigenfunctions and eigenvalues satisfy the
Schrödinger equation

2
1

2S
c 00

n 1 W���cn � Encn . (4)

Thus, in the thermodynamic limit X ! `, the excess free
energy is given by E0 which is in turn related to the con-
tact angle [defined only for T , Tw and m � msat�T �]
by E0 � 2SQ2

p�2, valid for small angles Qp described
by the interfacial model. Similarly, the normalized prob-
ability distribution for the interface height is Pp ��� �
jc0���j2. For later purposes, it is also convenient to define
the matrix elements
5536
�mjf���jn� �
Z

d� c�
m���f���cn��� . (5)

These will appear in our solutions for the wedge free-
energy and probability distribution function. The binding
potentials that we consider are of the usual form [15]

W��� � h̄� 1
a
�p

1
b
�q

; � . 0 , (6)

with h̄ ~ �msat 2 m�, a and b are effective Hamaker
constants and q . p . 0 allow for general types of
intermolecular potentials. Now, recall that for two-
dimensional critical wetting transitions, the critical behav-
ior generically belongs to one of three scaling regimes
depending on the values of p and q. Specifically, for
q . p . 2, p , 2 but q . 2 and, finally, p , q , 2,
the behavior falls into the strong, weak, and mean-field
fluctuation regimes with true universality only character-
istic of the former [13]. For example, the mean interface
height ���p 	 �Tw 2 T �2bs diverges with critical expo-
nents bs � 1, bs � 1��2 2 p�, and bs � 1��q 2 p� in
the three regimes, respectively. For complete wetting,
corresponding to h̄ ! 0 for T . Tw , there are only the
weak and mean-field fluctuation regimes, and the interface
height diverges as ���p 	 h̄21�3 and ���p 	 h̄21��p11�,
respectively. These remarks will serve to illustrate how
different the critical behavior at wedge filling is to stan-
dard planar wetting transitions.

We now turn our attention to the wedge geometry and
outline the calculation of the partition function ZP

wedge�X�
for the present periodic system. The advantage of this
choice of boundary conditions is that it allows us to
extract the excess wedge free energy Fwedge�a� rather
easily from FP

wedge�X� � 2 ln ZP
wedge�X�. To see this,

note that in the thermodynamic limit X ! `, the periodic
system reduces to two independent wedges because one
must also consider the contribution from the (inverted)
wedge at x � 6X�2 characterized by an angle 2a.
First, from FP

wedge�X� we subtract the free energy FP
p �X�

of a planar system (with periodic boundary conditions)
extending on the same area, i.e., a flat wall tilted an angle
a to the horizontal. This can be easily calculated with the
same Hamiltonian, Eq. (2), but with z�x� � ax (for all x
in the range 2X�2 , x , X�2). This defines the excess
periodic wedge free energy

DFP
wedge�X� � FP

wedge�X� 2 FP
p �X� . (7)

Thus, in the thermodynamic limit, we can write

lim
X!`

DFP
wedge�X� � Fwedge�a� 2 Fwedge�2a� , (8)

illustrating the independent contributions from the wedge
and inverted wedge. The partition function ZP

wedge�X�
is given by the fluctuation sum over all graphs y�x� or,
equivalently, over all relative positions ��x� � y�x� 2

z�x�. Making this change of variable, we can rewrite the
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energy, Eq. (2), of a configuration as

eH��� �
S

2
a2X 1 2Sa��0 2 �e�

1
Z X�2

2X�2
dx

"
S

2

√
d�

dx

!2

1 W���

#
,

where �0 � y�0� and �e � y�jX�2j� 2 z�jX�2j� are
the midpoint and edge (relative) interface heights.
Consequently,

ZP
wedge�X� � e2Sa2X�2

Z Z
d�0 d�e Zp

µ
�e, �0;

X
2

∂
3 e2Sa��e2�0�Zp

µ
�0, �e;

X
2

∂
.

Substituting the quantum mechanical result, Eq. (3), and
taking the thermodynamic limit, we arrive at the general
formula for the wedge free energy, valid for all binding
potentials,

Fwedge�a� � 2 ln�0je2Sa�j0� , (9)

where the inner product is defined in terms of the usual
planar system eigen functions [see Eq. (5)]. Proceeding
in this way, it is also possible to calculate the probability
distribution P ��; x� for finding the interface at height
� from the wall at a distance x along it. We omit
details and simply quote our final result obtained in the
thermodynamic limit [16],

P ��; x� �
X̀
n�0

�nje2Sa�j0�c�
n���c0���e2�En2E0� jxj

�0je2Sa�j0�
. (10)

Note that, since the thermodynamic limit is taken first (at
finite x), this result pertains to a single wedge system.
There is no contribution due to the inverted wedge at
x � 6X�2. For the probability distribution of the inverted
wedge, one simply reverses the sign of a and replaces jxj
by jx 2 X�2j. Note that when a � 0, the wedge free
energy vanishes and the probability distribution reduces to
the standard planar result Pp���. In addition, for a fi 0,
only the n � 0 term survives in the limit X ! ` so that
P ��; x� ! Pp ��� infinitely far from the wedge bottom.
The expression for the probability distribution simplifies
considerably if we consider the local height probability at
the midpoint x � 0. Writing P ��0� � P ��; 0�, we find

P ��0� �
jc0j

2e2Sa�0

�0je2Sa�j0�
, (11)

which is one of the central results of our paper. We note
that both Eqs. (9) and (10) are consistent since from the
Hamiltonian definition the mean midpoint interface height
satisfies 2S��0� � 2≠Fwedge�a��≠a. It is also possible
to expand P ��; x� for small x and derive further explicit
results which allow the calculation of the curvature of
various local operators at x � 0. In the present paper,
however, we simply concentrate on the properties of
the wedge free energy Fwedge�a� and midpoint height
distribution [16]. The essential observation to make here
is that, relative to the planar distribution function Pp ���,
the midpoint height probability P ��0� has an exponential
boost factor e2Sa� which decreases the pinning effect
of the binding potential (provided a . 0, of course).
Because of this exponential term, the location (phase
boundary) and character of the filling transition can
immediately be traced to the asymptotics of the planar
ground state wave function c0���. If the decay of this
function is too slow, the wedge distribution P ��0� is no
longer defined and the wedge is filled with liquid. Now,
for bulk coexistence (h̄ � 0) and subwetting temperature
(T , Tw), the asymptotic decay of c0��� has the same
functional form for all potentials of the form (4),

c0��� 	 e2SQp �T��; h̄ � 0 ,

T , Tw , � ! ` ,
(12)

where the specific p and q dependence only enters im-
plicitly through the temperature dependence of the contact
angle Qp �T � �

p
2jE0j�S. Thus, the location of the

wedge filling transition within the present model ex-
actly matches with the thermodynamic prediction, Eq. (1).
Moreover, since Qp �T � is analytic away from Tw , we may
identify jQp �T � 2 aj ~ Ta 2 T and derive the universal
critical singularities for critical filling

Fwedge�a� 
 ln�Ta 2 T �, ��0� 	 �Ta 2 T �21,
(13)

valid for all intermolecular forces (provided p . 1).
Therefore, the universality of the critical wedge filling
transition far exceeds that encountered at critical wetting,
and is ubiquitous to all realistic solid-fluid interfaces.
We also note that the transition is fluctuation dominated
since the midpoint roughness j� �

p
��2

0� 2 ��0�2 also
diverges with the same power law. The universality of the
critical exponents for critical filling is one of the central
predictions of our paper, and can be traced to the large
scale interfacial fluctuation occurring at the bottom of the
wedge. In contrast, mean-field calculations which ignore
fluctuation effects predict highly nonuniversal critical
behavior for critical filling. For example, minimization
of the Hamiltonian, Eq. (2), leads to the prediction that
the midpoint height diverges like ��0� 	 �Ta 2 T �21�p

[16]. In d � 2, this prediction is valid only for systems
with p , 1 which do not correspond to any known
physical forces.

Next, we turn our attention to complete filling occur-
ring for h̄ ! 0 and T . Ta . For h̄ fi 0, the asymptotic
decay of c0��� is faster than exponential due to the diver-
gent linear term in W���. This dominates the midpoint
probability function P ��0� at large distances and ensures
that the wedge is only partially filled when the system is
out of bulk two-phase coexistence. The singularity aris-
ing in the evaluation of the wedge free energy and mean
height ��0� can be calculated using standard techniques.
5537
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For the mean height ��0�, we find that the leading order
behavior as h̄ ! 0 is

��0� �

8<: S

2
�a22Q2

p �T ��
h̄ , Ta , T # Tw ,

Sa2

2h̄ , T . Tw ,
(14)

which is again independent of the intermolecular potential
exponents p and q. In fact, these results are identical
to those derived in the mean-field analysis of Rejmer
et al. [7] equivalent to a simple minimization of the
Hamiltonian (2). Thus, the universality of the complete
filling exponents has a geometrical and thermodynamic
origin rather than being a fluctuation related effect. We
mention here that the prediction (14) for the case T . Tw

is consistent with earlier solid-on-solid model calculations
of complete wetting at a corner [12]. In the light of these
transfer-matrix and mean-field results, we conjecture that
the critical singularities occurring at complete filling are
of the form (14), independent of the dimensionality.

To conclude, we mention that very similar phenomena
also occur for interface pinning in the bulk. Recall that
an interface is always pinned along a straight line of
weakened bonds, with depinning only occurring as the
strength of the bonds approaches the bulk value [13].
However, this is not the case if the line of weakened
bonds has a bend in it, as can be seen from the present
transfer-matrix analysis. To model this system, we use
the same function z�x� � ajxj to describe the local height
of the line of weakened bonds but with a square-well
potential of depth U and range R�2, chosen to mimic the
local energy cost due to the bond weakness (restricting
ourselves to systems with short-ranged forces). While
in the planar system (a � 0) the interface has equal
probability of being found above and below the line,
the bend at x � 0 breaks the symmetry and significantly
enhances the probability of finding the interface above the
line of weakened bonds. In fact, the interface unbinds
and depins from the defect line at a nonzero value of
the weakness parameter Ua satisfying E0�Ua� � Sa2�2
where E0 is the ground state energy of the square-well
potential trivially found from solution of Eq. (4).

In summary, we have shown through exact transfer-
matrix calculation that critical filling of liquid in a 2D
wedge is characterized by strongly universal critical be-
havior. While critical filling is dominated by fluctuations,
these do not affect complete filling which depends solely
on the system geometry and whose critical behavior is
correctly captured by mean-field theory. Similar behavior
5538
is expected for the 3D wedge. We also point out similar
behavior occurring at defect lines in the bulk.
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