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Experimental Determination of a Nonlinear Dynamic Model
of Plasma Turbulence Using Feedback Control
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A new and convenient method to experimentally determine nonlinear dynamical models of plasma
turbulence is described. It is based on a novel use of feedback control which generates information
about the model without introducing additional unknowns. The method is applied to an E 3 B
turbulence in the Columbia Linear Machine to determine the linear eigenfrequencies and nonlinear
coupling coefficients of a three wave coupling model directly from experimental data.

PACS numbers: 52.25.Gj, 52.35.Mw, 52.35.Ra
The physics of turbulent transport in plasmas remains
largely an open question. An essential ingredient of this
physics issue is an experimentally validated nonlinear dy-
namical model of plasma turbulence. Direct experimental
determination of the nonlinear dynamics underlying the
turbulence is nearly an intractable proposition. Experi-
mental verification of a number of well-known theoretical
dynamical models is largely absent. In this Letter we de-
scribe a novel experimental method for the determination
of the parameters of a three wave coupling model which is
an often used theoretical tool. First, it should be pointed
out that the three wave coupling model is widely used
in many areas of physics, i.e., hydrodynamics, nonlinear
optics (three wave mixing, parametric superfluorescence),
etc. In experimental settings with significant noise, the
method developed in this paper is extrapolatable and may
be uniquely suitable. Second, the method described be-
low can be easily adapted to another model of nonlinear
0031-9007�99�83(26)�5503(4)$15.00
dynamics of plasma turbulence: nonlinear Landau damp-
ing. The method is based on Ritz, Powers, and Bengston
[1], which assumes a nonlinear three wave coupling equa-
tion in the form of
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where the spatial Fourier spectrum f�k, t� of the fluctu-
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where t is a time delay and Lv � �gk 1 ivk�t 1 1 2

i�u�k, t 1 t� 2 u�k, t���e2i�u�k,t1t�2u�k,t�� and Qv1,v2 �
�LQ

k �k1, k2�t���e2i�u�k,t1t�2u�k,t��� can be solved from ex-
perimental data. One prerequisite of this approach is
obtaining the fourth order moment �Fv1Fv2F
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which is computationally intensive. This is solved by
Ritz et al. by approximating the fourth order moment
with second order moments �jFv1Fv2 j

2� by neglecting
terms �v0

1, v0
1� fi �v1, v2�. On the Columbia Linear Ma-

chine (CLM) [2], which produces a collisionless hydro-
gen plasma with a density N of 5 3 108 cm23, electron
temperature Te of 5 eV, and ion temperature Ti of 3 eV,
we are in an excellent position to perform this kind of
experiments. One major advantage is due to the steady
state plasma that our device produces, which allows us to
obtain good ensemble averaging. Also, since the fluc-
tuations in CLM are mostly narrow band with distinct
frequency peaks, one can easily identify discrete three
wave coupling triplets with distinct k numbers, as opposed
to the broad band turbulence present in many other de-
vices. Furthermore, in the past we have performed several
experiments using feedback from an ion/electron beam
source [3,4], or even a Langmuir probe, which enabled
us to suppress/enhance the underlying linear drive of the
instability [5]. In fact, in this experiment we make novel
exploitation of this feedback system to avoid calculating
the fourth order moments, as well as generating richer
data sets. We include linear feedback in Eq. (1) by adding
Gf�k, t� on the right-hand side, where G is the complex
(constant) gain of the feedback loop. It can be seen that
G modifies only the linear operator of Eq. (1), such that
Eq. (2) can be rewritten as
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FIG. 1. Power spectrum of plasma instabilities present in
CLM. Two cases are provided, one with moderate feedback
suppression and one with feedback turned off.
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By experimentally adjusting for different feedback gain
G, and measuring the subsequent fluctuation signal, we
can generate an arbitrary number of equations with a
fixed number of unknowns. This, in principle, allows
us to solve for gk 1 ivk and the coupling coefficients
L

Q
k �k1, k2� for each particular mode k.
The mode used for this experiment is a centrifugal flute

mode driven by the E 3 B rotation of the plasma [6],
whose power spectrum is shown in Fig. 1. The radial
electric field necessary for the rotation is naturally born in
most plasmas and can be enhanced in our machine via end
plate bias. For sufficient levels of equilibrium rotation, a
dominant mode is driven along with two harmonics. Also

FIG. 2. Bicoherence contour plot of the plasma instability.
Each contour step corresponds to bicoherence of 0.06. Because
of the symmetry properties, only the lower diagonal half is
displayed. Peaks on the diagonal represent self-coupling to
its harmonic, whereas peaks offset from the diagonal represent
coupling of two separate modes.
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shown in the figure is the mode behavior after moderate
suppression using feedback. Under most conditions, the
dominant mode has azimuthal mode number m � 1, with
typical frequency f � 50 kHz and a broad radial extent
equivalent to an n � 0 radial harmonic. Also present,
but usually at a few kHz higher than the dominant mode,
is a mode which shows a radial structure consistent
with an n � 1 harmonic, as previously discovered and
discussed in [7]. Even though the n � 1 radial harmonic
is not directly evident from the frequency spectrum, its
existence becomes apparent when the three wave coupling
triplets are being identified. This can be seen from
the bicoherence contour plot shown in Fig. 2, which
measures the second order correlation of three waves
with frequency f1, f2, and f1 1 f2, where f1 and f2 are
plotted on the x and the y axis, respectively. Based on
the number of ensemble averages taken and noise present
in the fluctuation, correlation higher than 0.1 can be taken
to be of significance for this experiment. For reason of
clarity of display, the bicoherence in Fig. 2 represents the
case for strongest coupling, i.e., maximum enhancement
during feedback. For all other cases, the bicoherence is
reduced accordingly, sometimes to the point where the
bicoherence falls below 0.1. However, even in these
cases it is assumed that the coupling is still present,
albeit weaker. Several sets of coupling triplets can be
identified from the plot. One set indicates harmonic
generation of azimuthal modes, i.e., the self-coupling of
the mode at frequency f with itself and 2f, indicated
by the strong peak at the diagonal of the bicoherence
plot. Also, one can see the dominant mode coupling
with other modes at around 80–100 kHz, indicated by
a series of weaker peaks along x � 80 100 kHz, y �
48 52 kHz. More interestingly is the coupling of the
dominant mode with the higher radial harmonic. This can

FIG. 3. Close-up of Fig. 2. The contour extending off the
diagonal represents coupling of the dominant mode with a
“radial” harmonic close by in frequency. Each contour line
represents an increase of value by 0.06.
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be seen from the close-up view of the previous contour
plot, shown in Fig. 3. Here, the peak on the diagonal,
which represents the self-coupling, is being extended
along a fixed frequency, which indicates a coupling triplet
of modes at f, � f 1 Df�, and �2f 1 Df�. Further
evidence is present by observing the coupling of these
two modes into a difference mode, i.e., a coupling triplet
at Df, f, and � f 1 Df�, shown as peaks in Fig. 2 at
x � 48 52 kHz and y � 3 8 kHz.

First, we estimate the real frequencies vk from bico-
herence and power spectrum. Then, to determine the
growth rate and coupling coefficients, only the real part
of Eq. (4) is used, since it is numerically more stable
to do so. Equation (4) is further modified by letting
ei�u�k,t1t�2u�k,t�� � �Fv�t�F�
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All the above quantities related to the fluctuation signal
Fv are obtained by measuring the density fluctuation
using a Langmuir probe biased to collect ion saturation
current, and then performing the appropriate mathemati-
cal functions once the signal was digitized to 12 bits ac-
curacy. Since all the modes have some spectral width,
the power of the modes is integrated over the appropri-
ate frequency band, after they have been ensemble av-
eraged over 200 samples. The feedback setup is almost
identical as described in [5], except that the actuator/
suppressor consists of a separate Langmuir probe for con-
venience, even though our ion/electron beam provides
similar results. Even though the suppressor probe is lo-
calized, it works via excitation of the eigenmodes of the
device which is a global flute mode for a certain set of
plasma parameters. The physics is similar to the excita-
tion of vibrational eigenmodes of a violin string by strik-
ing it with a delta function force. Direct experimental
determination of the gain and phase of the feedback loop
must be done under closed loop conditions to which these
pertain. Hence, for the purpose of this experiment, the
magnitude of the gain is set to a fixed level, such that
it still provides good suppression/enhancement. Then, to
determine this fixed gain, the phase of the closed loop is
varied using a time delay circuit. As this “phase shifter”
is varied through 180±, not only can one observe the sup-
pression/enhancement of the mode, but one can also ob-
serve the mode shifting in frequency, evident in Fig. 1.
According to our model, at the point when the gain is en-
tirely imaginary, its contribution should be only in shift-
ing the real frequency without affecting the instability’s
growth rate. At this phase shift setting, the magnitude
of the gain then directly corresponds to the mode shift in
frequency, which can be directly measured from the ex-
periment. This phase shift setting then also serves as a
calibration point for the phase shifter (u � 90±). After
this calibration, the magnitude of the gain is kept con-
stant, and the phase is adjusted to obtain the different sets
of equations. In order to avoid solving for excessively
insignificant coupling coefficients, some triplets are trun-
cated or omitted. This includes all triplets where two out
of the three modes exhibit low power, such as the cou-
pling of the dominant mode with the mode at 80 100 kHz
to a third mode at above 120 kHz. This is possible be-
cause for the actual calculation the bispectrum is needed
instead of the normalized bicoherence, such that low mode
amplitude results in low bispectrum. Also, in theory the
self-coupling of the mode at f and the coupling with the
radial harmonic at � f 1 Df� couples to two independent
modes at 2f and �2f 1 Df�, respectively. In reality, it is
impossible to accurately distinguish these two modes, as
the mode power at these frequencies again is quite small.
Therefore, these two modes at 2f and �2f 1 Df� are
lumped together and considered as a “single” mode. Fi-
nally, one should note that since the bispectrum is needed
instead of the bicoherence, in most cases high bispec-
trum values are obtained despite low bicoherence results.
Hence, as long as the coupling triplets can be correctly
identified from one of the cases, low bicoherence in other
cases do not necessarily indicate poor bispectrum results.

It is found that the bicoherence readings are far better
during feedback enhancement than during suppression,
mostly due to the increased signal to noise ratio from
enhancement. Therefore, data are taken at seven different
phase settings, all of which provide enhancement of the
mode. These, along with the case of not applying any
feedback, provide eight independent equations. They are
then used to solve for all the unknowns. Since even
the dominant mode has the highest number of only
seven unknowns, singular value decomposition is used
to solve for the unknowns. The result is summarized
in Table I and discussed below. First, it is noted that
the dominant mode k has a positive growth rate, while
the two other possible members of a triad have negative
growth (damping) rates. This is certainly consistent with
the physics requirement that for the nonlinear saturation
of a growing mode one needs coupling to damped modes
which provide the energy sinks for the establishment
of a steady state. In the above scenario, we single
out a triplet �k, k1, k3� as the dominant three wave
coupling mechanism in our experiment, based on the
fact that the amplitude of the k2 mode is the weakest.
Furthermore, it is involved jointly in a three wave
process, as well as harmonic generation, making it very
difficult to discern and isolate the two experimentally.
Approximate estimates of the real frequencies and growth
rates have been theoretically obtained as follows [8]: f 	
60, gk 	 1 kHz; fk1 	 72, gk1 	 22.3 kHz; fk2 	 142,
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TABLE I. Table showing growth rate g (Hz) and coupling coefficient L �Vs21� related to each mode.

For mode k: f � 50 kHz, m � 1, n � 0 flute mode:
gk � 2100, Re
LQ

k �k, k2�� � 560, Im
LQ
k �k, k2�� � 160, Re
LQ

k �k1, k2�� � 23700, Im
LQ
k �k1, k2�� � 6700,

Re
LQ
k �k1, k3�� � 2120, Im
LQ

k �k1, k3�� � 940
For mode k1: f � 55 kHz, m � 1, n � 1 flute mode:
gk1 � 22500, Re
LQ

k1 �k, k2�� � 22800, Im
LQ
k1 �k, k2�� � 940, Re
LQ

k1 �k, k3�� � 2620, Im
LQ
k1 �k, k3�� � 630

For mode k2: f � 102 kHz, m � 2, n � 0 flute mode:
gk2 � 217 000, Re
LQ

k2 �k, k�� � 150, Im
LQ
k2 �k, k�� � 270, Re
LQ

k2 �k, k1�� � 2630, Im
LQ
k2 �k, k1�� � 23500

For mode k3: f � 5 kHz, drift wave:
gk3 � 2910, Re
LQ

k3 �k, k1�� � 400, Im
LQ
k3 �k, k1�� � 280
gk2 	 26 kHz. With the exception of gk2 , these indicate
rough agreement with experimental results presented in
Table I. The reason for the large discrepancy in gk2 is
clearly attributable to the small signal to noise ratio due
to the small amplitude of this mode. It is also noted that
there is about a 7% frequency mismatch in the theoretical
resonance condition which is quite plausible.

Even with a steady state plasma and good ensemble
averaging, the consistency of the bispectrum (and bico-
herence) results are still less than desired. One possi-
ble explanation is that there are long term drifts in our
plasma device, which become apparent when many aver-
ages need to be taken over a long period of time. This af-
fects mostly the accuracy of the coupling coefficients, and
not the growth rate. The growth rate, however, is more
dependent on the estimation of the magnitude of the gain.
If the gain magnitude is overestimated, then the growth
rates will also be systematically higher. The assumption
that feedback modifies only the linear operator is reason-
able, but not provable in general. In this case it is con-
firmed by monitoring the mapping between the feedback
phase shifts and the frequency shifts of the mode, which
follows the model closely.

In general, linear feedback does not change the
equilibrium parameters of a system and is therefore non-
invasive. In our experiment we have clear evidence that
feedback does not alter the plasma parameters like
density, electron and ion temperatures, and electric
potentials and their gradients, which determine the
frequencies, growth (damping) rates, wave numbers, and,
consequently, nonlinear coupling coefficients. A model
of three wave nonlinear coupling can be supported on the
basis that other possible nonlinear mechanisms of mode
saturation in our experiment are not viable. These include
quasilinear flattening of profiles which is not observed
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experimentally or nonlinear Landau damping which is
not possible for flute modes discussed here. The plasma
modes discussed here are variations of drift modes which
have been observed in tokamaks, stellarators, and other
plasma devices in various guises and are strongly believed
to be responsible for the largely intractable question of
anomalous transport. In summary, the method described
here is a novel approach of significant promise for the
determination of plasma turbulence models. Compared
to the other theoretical methods, it makes direct use of
experimental data as much as possible and avoids calcu-
lating higher order moments, unlike a recent theoretical/
experimental method using a modified and improved
Ritz method [9]. Furthermore, because of the use of
continuously variable feedback, reliable results from rich
data sets are possible.
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