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Collapse of Incoherent Light Beams in Inertial Bulk Kerr Media
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We use the coherent density function theory to show that partially coherent beams are unstable and
may collapse in inertial bulk Kerr media. The threshold power for collapse, and its dependence on
the degree of coherence, is found analytically and checked numerically. The internal dynamics of the
walk-off modes is illustrated for collapsing and diffracting partially coherent beams.
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It was recently demonstrated by Mitchell et al. that a
slow self-focusing nonlinear medium can support self-
trapped partially coherent beams, or incoherent solitons
[1,2]. Such beams are generated by an incoherent source
with no correlation between light emitted from different
points. This results in some level of randomness (or partial
correlation) in the phase across the beam. The weaker the
correlation, the stronger the incoherence [3]. As a result,
a partially coherent beam spreads faster than its coherent
counterpart of the same width. Furthermore, the inten-
sity distribution across the beam exhibits speckle structure,
which prevents the “standard” uniform self-focusing ob-
served in instantaneous nonlinear media as the beam tends
to form filaments. The necessary condition for soliton for-
mation is that the nonlinear response of the medium is slow
compared to the fast fluctuations of the phase front of the
incident beam. In this case the medium cannot follow the
random speckle structure of the beam, but responds to its
time-averaged intensity.

After the early experiments in photorefractive media
[1,2], Christodoulides et al. used the coherent density
function theory, in which the beam is represented as a
superposition of mutually incoherent components, to de-
scribe the spatially partially coherent (incoherent) beams
[4,5]. For the special logarithmic nonlinearity the station-
ary incoherent soliton solution was found analytically [5].
The stationary solutions can also be found analytically
using the multimode decomposition method developed by
Mitchell et al. [6]. With this method, 2D (two transverse
dimensions) incoherent solitons were found in logarithmic
media by Christodoulides et al. [7] and 1D incoherent
solitons were found in Kerr media by Carvalho et al. [8].
Recently, Snyder and Mitchell [9] and Shkunov and
Anderson [10] used the geometric optics approach to find
exact formulas for incoherent soliton solutions in the limit
when diffraction can be neglected. This geometric optics
approach is to some extent equivalent to the analysis of
incoherent temporal solitons by Hasegawa [11].

Self-focusing of incoherent beams in inertial bulk
Kerr media was discussed by Pasmanik [12] more than
0031-9007�99�83(26)�5479(4)$15.00
20 years ago based on the nonlinear equation for the
cross-correlation (or mutual coherence) function. This
aberration-free approach indicated collapse, but led to
the incorrect conclusion that the threshold power above
which collapse occurs is the same as for coherent beams.
Aleshkevich et al. [13] later used the mutual coherence
function in a more rigorous numerical study, in which
fitting to the numerical results gave an empirical formula
for the effect of the partial coherence of the beam on the
collapse threshold power.

Here we use the coherent density function approach to
study the properties of incoherent beams in inertial bulk
Kerr media. We find the first analytical formula for the
collapse threshold power and show how the deterioration
of spatial coherence tends to suppress self-focusing. Fur-
thermore, we present the first fully 2D numerical propaga-
tion of collapsing and diffracting incoherent beams.

We consider an incoherent light beam propagating in
a focusing inertial bulk Kerr medium. After a simple nor-
malization the dynamical equation for the coherent density
function f � f��r , z; �u� can be written in the dimensionless
form (see, e.g., [4,5]),

i≠zf 1 i �u ? �=�f 1 =2
�f 1 If � 0 . (1)

Here j fj2 defines the angular intensity distribution, which
is parametrized by the 2D walk-off vector �u � �ux , uy�.
The 2D diffraction space is spanned by the transverse co-
ordinate vector �r � �x, y�, with �=� � �≠x , ≠y�, and =

2
� �

≠2
x 1 ≠2

y . The dimensionless total intensity I is given as
an integral of j fj2 over the 2D walk-off space

I��r , z� �
Z

j f��r, z; �u�j2 d �u , (2)

where
R

d �u �
R

`
2`

R
`
2` dux duy . Equation (1) can be

written in a simpler form without walk-off by applying the
unitary transformation

f��r , z; �u� � F��r , z; �u� exp�iu2z�4 2 i �u ? �r�2� , (3)
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where u2 � j �uj2 � u2
x 1 u2

y . In terms of F��r , z; �u� the
dynamical equations become

i≠zF 1 =2F 1 IF � 0 . (4)

The model (4) conserves the power Pu� �u� in each angular
component and the Hamiltonian H,

Pu� �u� �
Z

j f��r , z; �u�j2d �r , (5)

H �
Z Z µ

j=Fj2 2
1
2

IjFj2
∂

d �r d �u , (6)

where
R

d �r �
R

`
2`

R
`
2` dx dy. Also the momentum in

the x and y direction, Mx,y �
R R

2 Im�F�≠x,yF� d �r d �u,
the total power, P �

R
Pu� �u� d �u, and the total momen-

tum, �M � x̂Mx 1 ŷMy , are conserved. Furthermore, the
displacement of the center of mass, ��r� � P21

R
�rI d �r ,

is proportional to the total momentum, d��r��dz � �M�P,
and thus the acceleration of ��r� is zero.

To analyze the dynamics analytically we define the
beam width (width of the intensity profile) or so-called
virial, V �z� � P21

R
R2I d �r , where �R � �r 2 ��r�, and

R � j �Rj is the distance from the center of mass. Using
the continuity equations for the conserved quantities
we obtain for localized solutions the first derivative,
dV�dz � 4P21

R R
Im� �R ? F�=F� d �r d �u, and the virial

relation for the conserved acceleration,

d2V
dz2 �

8
P

√
H 2

M2

4P

!
, (7)

where M2 � j �Mj2 (see [14] for the first derivation of
the virial relation for the coherent limit of the nonlinear
Schrödinger (NLS) equation). If the right-hand side of (7)
is negative the beam width V �z� will continuously decrease
and a collapse, defined as V �z� ! 0, will inevitably occur
at a finite distance. Thus H 2 M2��4P� , 0 is a sufficient
condition for collapse. Importantly, such a collapse of the
total wave function implies also a collapse of each angular
component, Vu�z; �u� � P21

R
R2jF��r , z; �u�j2 d �r ! 0. If

the right-hand side of (7) is positive, H 2 M2��4P� . 0,
we have to do further analysis to determine whether a col-
lapse can occur or not. For example, if the beam is given
a sufficiently strong focusing at the input 	dV �0��dz , 0

a collapse could, in principle, develop despite the second
derivative of the virial being constant and positive.

We now assume that the profiles of the intensity and the
angular power spectrum are both radially symmetric and
Gaussian at the input �z � 0�, i.e.,

f��r, z � 0; �u� �

s
I0

ps2 exp

√
2

u2

2s2 2
r2

2D2

!
, (8)

where I0 is the peak intensity 	I��r, z � 0� �
I0 exp�2r2�D2�
. This is the so-called Gaussian-Schell
model of partially coherent light [3]. In logarithmic media,
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such a beam will maintain its Gaussian statistics during
propagation [5]. In inertial Kerr media this is not so.
Transforming this initial condition according to Eq. (3),
the total power and the Hamiltonian become P � pD2I0

and H � pI0 1 pD2s2I0�4 2 pD2I2
0 �4, respectively,

with the momentum being zero, M � 0, due to symmetry.
From Eq. (7) we then obtain that the beam will collapse
if the total power is above the threshold �H , 0�,

Pth � PNLS
th �1 1 b� , (9)

where b � D2s2�4 is the number of speckles inside
the beam cross section, and PNLS

th � 4p is the threshold
power for collapse of coherent Gaussian beams described
by the NLS equation [15]. Importantly dV �0��dz � 0
for this initial condition, and thus P . Pth, is both a
necessary and sufficient condition for a total collapse in
the sense that the total beamwidth goes to zero, V �z� ! 0.
As could be expected, the power threshold for collapse
increases with the degree of incoherence b. In other
words, the more incoherent the beam is the stronger is
the tendency to diffract, and the more power is required
for the self-focusing effect to dominate diffraction and
thereby cause a collapse to occur. The expression (9)
represents the first analytical prediction of the influence of
the degree of incoherence on the self-focusing of coherent
beams in inertial Kerr media and agrees well with the
empirical formulas Pth � PNLS

th �1 1 0.6b� obtained
numerically by Aleshkevich et al. [13]. Note that in the
coherent limit when s ! 0 and the angular spectrum
becomes a delta function, the power threshold reduces to
the NLS threshold, PNLS

th , as it should.
To study the incoherent beam propagation numerically

we discretize the walk-off space, F��r, z; �u� ! Fn��r , z�,
into a central component �n � 1� at ux � uy � 0, and Nr

rings each with Ns equispaced spokes or components on
them, as illustrated in Fig. 1. Thus the forward traveling
central component has zero walk-off and all components
on a given ring walk off at the same angle to the z axis, but
a different angle in the �x, y� plane. This gives the discrete
set of equations,

i≠zFn 1 =2Fn 1 IFn � 0 , (10)

x

y

θx

θy

FIG. 1. Discretization of the �u walk-off space into a central
component �n � 1� at ux � uy � 0 and Nr rings, each with Ns
equispaced spokes or components on them.
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FIG. 2. Analytical collapse threshold PNLS
th �1 1 b� (solid

line) and best numerical fit PNLS
th �1 1 0.4b� (dashed line)

versus the angular spectrum width s. Filled (open) circles
indicate numerically observed collapse (diffraction).

where the intensity is now a sum over N components

I �
NX

n�1

VnjFnj
2, N � NrNs 1 1 , (11)

weighted with the solid angle Vn, which denotes the
resolution in �u space (dependent on the ring number).
The discrete model (10) with I ! lnI was used by
Christodoulides et al. to study incoherent 1D solitons
in logarithmic media [5]. The mathematical problem of
collapse in Eq. (10) was studied by Bergé [16].

We have fixed D � 1 and used the split-step Fourier
technique to solve Eq. (10) with N � 513 walk-off com-
ponents �Ns � 2Nr � 32� and 128 3 128 equidistant
points in a square �x, y� lattice over 	25, 5
. Furthermore,
we have fixed um�s � 2.45, where um is the maximum
walk-off (u value on the outer ring 16), which defines

FIG. 3. Evolution of the position of the peak amplitude of
the individual components, shown as tubes, during a collapse
for s � 1.75 and P � 20. Shown is the central component
along with components from rings 2, 4, and 6, having respective
walk-offs u � 0, 0.5, 1.1, and 1.6. A quadrant of components
has been removed in order to see the internal structure.
FIG. 4. Top: components from a longitudinal cut plane of
Fig. 3 superimposed on the total intensity in grey scale (white
being the most intense). Shown is the central component and
components from rings 2, 4, . . . , and 16. Bottom: evolution of
the total peak intensity at �r � �0, 0�.

the cone of angles, in which the walk-off components are
distributed. The numerical results, which are summarized
in Fig. 2, confirm the analytically predicted dependence
of the collapse threshold on the degree of coherence.

The discrepancy between the best fit Pth � PNLS
th �1 1

0.4b� and the analytical prediction (9) seems to be an ar-
tifact of the finite number of walk-off components, which
should cause the collapse threshold to saturate for large
values of s (i.e., for strongly incoherent beams), as ob-
served for two coupled NLS equations [17]. However, it
is not computationally feasible to prove this.

In general each component always starts to walk off at
an angle Atan�u�, corresponding to simple linear walk-
off. Depending on the power and the value of u for the

FIG. 5. Evolution of the center of mass of the individual com-
ponents, shown as tubes, during diffraction for s � 2.75 and
P � 20. Shown is the central component along with compo-
nents from rings 2, 4, and 6, having respective walk-offs u � 0,
0.8, 1.7, and 2.5. A quadrant of components has been removed
in order to see the internal structure.
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FIG. 6. Top: components from a longitudinal cut plane of
Fig. 5 superimposed on the total intensity in grey scale (white
being the most intense). Shown is the central component and
components from rings 2, 4, . . . , and 16. Bottom: evolution of
the total peak intensity at �r � �0, 0�.

particular component, a certain part of the field escapes
the attractive potential (or waveguide) of the total intensity
and continues to walk off, while another part is captured
and reflected back towards the center. If enough power
is reflected a collapse occurs with the intensity going to
infinity at the center r � 0, as shown in Figs. 3 and 4.
In the waveguide analogy the waveguide created by the
total intensity becomes progressively narrower during a
collapse, thereby focusing all of the trapped components
at the same single point. Note that the shading of the tubes
has no meaning, but is used only to improve visualization.

If the reflected power is not enough to initiate a collapse,
then all components will diffract and the total beam will
spread out, as shown in Figs. 5 and 6. Still the compo-
nents with a sufficiently small walk-off are trapped in the
waveguide created by the total intensity. However, since
the waveguide is now expanding, the reflected components
cross the axis at different points.

While plotting the evolution of the position of the com-
ponents as tubes is conceptually nice it does not show the
quite complicated underlying field structure. This always
consists of a trapped part and a radiative part that walks
off, thereby pulling the center of mass away from the cen-
ter r � 0. Thus, plotting the position of the center of mass
in Figs. 3 and 4 would not, for example, have conveyed the
impression of a total collapse of all components at the same
point at the center. A detailed study of the mode structure
is under way.

In conclusion we have used the coherent density ap-
proach to derive an analytical expression for the power
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threshold for collapse of spatially partially coherent beams
in inertial bulk Kerr media. We find that the necessary
power for collapse increases with the degree of incoher-
ence b as PNLS

th �1 1 b�, where PNLS
th is the threshold

power for collapse of coherent beams. We have confirmed
this dependence numerically and illustrated the typical
beam evolution during a collapse and diffraction. Our re-
sults agree well with the threshold power PNLS

th �1 1 0.6b�
obtained earlier from a purely numerical analysis of the
mutual coherence function.
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