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Formation of Optical Subcycle Pulses and Full Maxwell-Bloch Solitary Waves
by Coherent Propagation Effects
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We demonstrated that optical subcycle pulses can be generated in dense media of two-level systems
due to pulse splitting and reshaping of pulses of a few optical-cycles time duration. Novel features
in the spectral signatures of the pulses are predicted, a large blueshift in the transmitted and a large
redshift in the reflected pulse, which are explained by intrapulse four-wave mixing. Solitary propagation
phenomena in the full Maxwell-Bloch equations beyond the limits of slowly varying envelope and
rotating-wave approximations are observed, e.g., the formation of solitary half-cycle pulses and two-
soliton pulses.

PACS numbers: 42.65.Re, 42.50.Gy
Recent advances in ultrafast laser technology have
made possible the generation of extremely short and
intense pulses with only two optical periods or less than
5 fs in duration in the visible region [1,2]. Efforts for
generation of still shorter pulses are motivated by the
possibility to study light-matter interactions under unique
conditions as the pulse duration approaches the duration
of a single optical cycle. Subcycle pulses represent a
new type of radiation, which is now quasistatic in nature
because of the absence of a fast-oscillating ac component.
Such intense pulses will bring a vast variety of intriguing
new physical phenomena in the light-matter interaction
and provide a large potential of possible applications.

Currently, subcycle pulses are available only in the
spectral region of THz with a duration of about 0.5 ps [3].
The duration of pulses generated directly from a mode-
locked solid-state laser is limited by a number of physical
effects such as dispersion control over the whole spectrum
and a limited gain bandwidth. In the most frequently used
method of pulse shortening, a nonlinear waveguide for
spectral broadening and linear dispersive optical elements
for the compensation of the frequency-depending phase
are utilized [2]. However, with the extremely increased
bandwidth of subcycle pulses, such dispersion control is
difficult to realize. Several other potential techniques have
been proposed recently. Most interesting are proposals
to reach the sub-fs limit by high-harmonic generation that
relies on phase locking between consecutive harmonics or
utilizes single harmonics [4]. Another approach uses the
interaction of THz subpicosecond half-cycle pulses with
two-level atoms [5].

The most promising conditions for the generation of
sub-fs pulses are provided by strong nonlinear processes
with a high degree of the spatiotemporal coherence.
We investigated such a process whereby a layer of a
resonant dense medium described by a two-level model
is driven by a strong and extremely short optical pulse.
For pulses with a duration of many cycles, the nonlinear
properties of two-level media have been studied in a large
number of papers. In particular, the resonant interaction
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of pulses shorter than all relevant relaxation times of
the medium gives rise to the effect of self-induced
transparency (SIT) and pulse splitting [6]. It is based on
the slowly varying amplitude approximation (SVEA) of
Maxwell’s equations and the rotating-wave approximation
(RWA) of the density matrix equation. Clearly, these
approximations fail if the pulse duration approaches the
duration of several optical cycles [7–9]. Here we explore
such a propagation regime and solve the full Maxwell
equations and the full Bloch equations without the use
of SVEA or RWA.

We consider the propagation of an extremely short
pulse along the z axis normally to an input interface of
a resonant two-level medium at z � 0. Initially the pulse
moves in the free space; then it partially penetrates into the
medium and partially reflects backwards; the penetrating
part propagates through the medium and finally exits again
into the free space through the output interface at z � L.
With the constitutive relation for the electric displacement
for linear polarization along the x axis, Dx � e0Ex 1 Px ,
the Rabi frequency V � dEx�h̄ and C �

p
m0�e0 dHy�h̄

Maxwell’s equations for the medium take the form

�C � 2
≠V

≠z
, �V 1 vc �u � 2

≠C

≠z
, (1)

where an overdot signifies a time derivative, Ex , Hy are the
electric and magnetic fields, respectively, d is the dipole
moment, z � z�c, vc � Nd2�e0h̄, and N is the den-
sity. In Eqs. (1) the macroscopic nonlinear polarization
Px � N du is connected with the off-diagonal density ma-
trix element r12 �

1
2 �u 1 iy� and the population differ-

ence w � r22 2 r11, which are determined by the Bloch
equations [6]:

�r12 1 �g2 2 iv0�r12 � iVw ,

�w 1 g1�w 1 1� � 22Vy .
(2)

Here v0 is the resonant frequency, and g1 and g2 are,
respectively, the population and polarization relaxation
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constants. The initial condition is V�t � 0, z � � C�t �
0, z � � V0 cos�vp�z 2 z0�� sech�1.76�z 2 z0��tp�, where
V0 is the peak Rabi frequency of the incident pulse, vp

is the carrier frequency, and tp is the FWHM of the
pulse intensity envelope. The choice of z0 ensures that
the pulse penetrates negligibly into the medium at t � 0.
The medium is initialized with u � y � 0 and w � 21
at t � 0.

Note that Maxwell’s equations in the normalized form
(1) show the role of the collective frequency parameter
vc as a measure of the coupling between the field and
the medium. Assuming the resonance condition vp �
v0 and slow relaxation times, the solution of the prob-
lem depends only on three normalized parameters V0tp ,
vctp , and v0tp which permit a rescaling of the five
atomic and pulse parameters. Several gaseous atoms have
well isolated resonances in the optical region (as, e.g.,
rubidium with vp � 2.4 fs21), but the necessary high
density or high pressure for the required parameters as
given below is scarcely to realize. However, the two-
level model can be still applied for the description of co-
herent effects for materials with a broad distribution of
transitions such as inhomogeneously broadened resonance
lines in gases and solids [6], but also in the sense of an
approximation for inhomogeneous quasicontinuous energy
bands as, e.g., in semiconductors [10,11]. In these more
complex systems the coherent superposition of a band of
continuous transitions with approximately the same dipole
moment manifests like a unified single level with an in-
homogeneous linewidth �T�

2 �21. In the present Letter the
inhomogeneous broadening is neglected. In the follow-
ing we consider the dimensionless parameters of the prob-
lem in the ranges v0tp � 11.5, 1 # vctp # 10, 7 #

V0tp # 22. It is instructive to indicate concrete ini-
tial pulse and material parameters which meet these con-
ditions: tp � 5 fs, vp � v0 � 2.3 fs21 �l � 830 nm�,
d � 2 3 10229 A s m, g

21
1 � 1 ps, g

21
2 � 0.5 ps. For

these parameters the density N � 4.4 3 1020 cm23 gives
vc � 0.2 fs21 and the Rabi frequency V0 � 1 fs21 cor-
responds to the electric field of Ex � 5 3 109 V�m or an
intensity of I � 6.6 3 1012 W�cm2.

Equations (1) and (2) were integrated by use of Yee’s
finite-difference time-domain (FDTD) discretization
scheme [12] for the fields and the predictor-corrector
method for the material variables [7]. Nonreflecting
boundary conditions [13] were incorporated with FDTD
discretization which avoids the influence of the finite-
space computational domain. The performance of the
numerical scheme was monitored at each time update by
calculation of the pulse energy, the energy stored in the
medium, and the energy flux through the computational-
domain boundaries in comparison with the energy of the
initial pulse. In all of our simulations the total energy
was conserved with an accuracy better than 0.001%.

We have obtained solutions of Eqs. (1) and (2) for
different input pulse parameters and medium densities.
In general, with an input envelope area A � 1.76V0tp
smaller than p and chosen medium densities, the main
part of the pulse is reflected, but with increasing area split-
ting of the penetrating part accompanied by pulse short-
ening occurs, in agreement with results within the SVEA
and RWA [6]. However, in detail the pulse evolution dra-
matically changes for input pulses with a duration of 5 to
10 fs, where novel transient features arise which quali-
tatively differ from standard results. As an example, in
Fig. 1 the reflected, penetrating, and transmitted pulses
are shown for different medium densities and a fixed input
pulse maximum V0 � 1.4 fs21 corresponding to the en-
velope area A � 4p. For the case of lower density with
vc � 0.2 fs21, the reflection is weak and the penetrating
part is strong enough to split into two pulses, the stronger
of which moves faster than the weaker. In the case of
a more dense medium (Fig. 1b), a significant part of ra-
diation with low-frequency oscillations on the back front
is reflected from the boundary. With further propagation
the pulses in Fig. 1 behave in a different manner. For the
less dense medium the weaker pulse in Fig. 1(a) decays
quickly, while the first pulse propagates over much longer
distances. In Fig. 2 pulse shape, polarization and popu-
lation inside the medium with vc � 0.2 fs21 is shown at
a propagation distance of z � 27 mm. As seen in com-
parison with the incident pulse (dotted line), the pulse is
significantly shortened up to almost a single cycle, the
population is completely inverted in the pulse peak and
driven back to the ground level at pulse back front, and
the polarization has the same direction as the field; nev-
ertheless, the evolution does not lead to a solitary propa-
gation regime. In comparison, for the higher density with
vc � 1 fs21 the electric field, polarization and population
at z � 60 mm are shown in Fig. 3. In this case we ob-
serve a few-cycle field oscillating with higher frequency
as compared with the initial pulse oscillations. The
polarization follows the field quite accurately in time,
but with opposite direction. As a consequence the phase

FIG. 1. Electric field profiles for different time moments and
medium densities near the input face [(a),(b)] and outside the
exit face [(c),(d)]. Parameters: V0 � 1.4 fs21, L � 45 mm;
(a) t � 0.1 ps, vc � 0.2 fs21; (b) t � 0.1 ps, vc � 1 fs21;
(c) t � 0.3 ps, vc � 0.2 fs21; (d) t � 0.4 ps, vc � 1 fs21.
Dotted line: Incident pulse at t � 0.
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FIG. 2. (a) Temporal shape of the electric field (solid line);
(b) polarization u (solid line) and population w (dashed line)
at z � 27 mm inside the medium for vc � 0.2 fs21, V0 �
1.4 fs21, L � 45 mm. The incident pulse shifted to the same
peak position is shown by the dotted line.

velocity of this pulse is larger than the light velocity in
free space. It is remarkable that in this case the pulse
propagation and the two-level atom dynamics show evi-
dence of a soliton propagation regime beyond SVEA and
RWA which will be discussed later.

To expose the carrier frequency changes in detail, we
present in Fig. 4 the evolution of the pulse spectrum
during propagation through a 150-mm thick layer for
the case vc � 1 fs21 and V0 � 1.4 fs21. As seen the
reflected pulse consists of two separated portions. One
peak is located around the input central frequency v0,
while the other part shows a large redshift with a
spectrum maximum position at approximately 0.5v0.
On the other hand, the main part of the penetrating
pulse spectrum exhibits a blueshift with a maximum at
1.5v0.

The physical interpretation of the observed spectral
transformation during the propagation can be given by
intrapulse third-order four-wave mixing (FWM) of the
type 2v ! v0 1 v00 with v being the pulse compo-

FIG. 3. As in Fig. 2 but for z � 60 mm, vc � 1 fs21, L �
150 mm. Diamonds represent the solution (4).
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nent frequency within the bandwidth and v0 and v00 the
new resulting frequencies. Such a nonlinear process is
ignored in the framework of RWA, but it is clearly pre-
sented in the exact Bloch equations and becomes sig-
nificant for very short pulses. Significant FWM occurs
only if the phase-matching condition Dk 1 Dknl � 0 is
satisfied, where Dknl is due to a nonlinear contribution in
the Bloch equations (2). The z-depending maximum shift
and spectral broadening in Fig. 4 can be explained from
the solution of this phase-matching condition with Dk �
2k�v� 2 k�v0� 2 k�v00� for collinear forward propaga-
tion and Dk � 22k�v� 2 k�v0� 2 k�v00� for backward
propagation with the linear dispersion relation in the limit
of weak medium excitation (which is the case in Figs. 3
and 4) k�v� � �v�c��

p
1 1 vc��v0 2 v 1 ig2�.

Note that for longer pulses with g
21
2 ø tp ø g

21
1

another type of frequency transformation in two-level
systems with a much smaller redshift in the reflected wave
has been predicted in Ref. [14]. At these conditions a
saturable absorption front is formed in the medium, and
the redshift due to self-reflection from this moving front
has been explained by the Doppler effect.

In Fig. 5 we present the propagation of a more intense
incident pulse with the Rabi frequency V0 � 4.4 fs21 and
the envelope area A � 12.5p in a more dense medium
with vc � 2 fs21. In this case the reflected pulse is rather
weak and the penetrating part splits mainly into three
pulses with different field strengths and velocities. With
further propagation these pulses evolve into a higher-
frequency oscillating pulse and two separated half-cycle
pulses of opposite polarity. Both unipolar half-cycle
pulses with a duration ,1 fs are not attenuated during
long-term propagation and show a clear solitary behavior.
As remarked above the existence of SIT solutions of the
envelope equations is restricted by the validity of SVEA
and RWA, which is violated for the conditions considered
here. However, there exists an exact nonoscillating
solitary solution for field strength of the full Maxwell-
Bloch equations (1) and (2) (with g1 � g2 � 0), which

FIG. 4. Evolution of the pulse spectrum during propaga-
tion inside and outside the medium for vc � 1 fs21, V0 �
1.4 fs21, L � 150 mm.
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FIG. 5. Electric field profiles near the input face located at
z � 0 (a), inside the medium (b), and near the output face
located at z � 150 mm (c) for vc � 2 fs21, V0 � 4.4 fs21.
(a) t � 0.1 ps; (b) t � 0.4 ps; (c) t � 0.7 ps. The incident
pulse at t � 0 is shown by the dotted line.

is given by the expressions

V � A sech�A�t 2 mz ��, u � 2v0bV ,

w � 21 1 2bV2, (3)

where m �
p

1 1 bv0vc is the pulse refractive index
and b � �A2 1 v

2
0�21 [15]. The solution (3) describes

a unipolar half-cycle pulse with the amplitude A that is
the only free parameter determining the pulse duration.
As shown in Fig. 6 for the third pulse of Fig. 5 the
numerically obtained solutions and the solution (3) being
fitted only by the amplitude can be clearly identified with
each other even though the pulse propagation in Fig. 5
at z � 120 mm is still not completely in a steady-state
regime because the three pulses still interact. In Fig. 6c
the spectra of the three pulses are presented. As expected
both half-cycle pulses show extended spectra up to zeroth
frequencies, while the first pulse has a large blueshift of
the carrier frequency with a mean frequency v̄ � 4v0.

Note that the fastest blueshifted pulse in Fig. 5 shows
also a solitary behavior but, in difference to the half-cycle
pulses, that of a multisoliton solution. Far away from the
input interface, Maxwell’s equations can be approximated
by a reduced version without the use of SVEA and
RWA, but with the neglect of back reflection. These
reduced Maxwell-Bloch equations have exact multisoliton
solutions [16]. Their two-soliton solution describing a
localized pulse with “internal” oscillations is given by

V � A sechqe
cosq 2 a sinq tanhqe

1 1 a2 sin2q sech2qe
, (4)

where the amplitude A and carrier frequency v̄ are
free parameters, qe � A�t 2 mez ��2, q � v̄�t 2 mz �,
a � A�2v̄. The refractive indices me, m and the atomic
variables are given in Ref. [16]. The solution (4) with
v̄ �

R`

0 vjV�v�j2 dv�
R`

0 jV�v�j2 dv and an appro-
priate choice of the amplitude coincides well with the
blueshifted pulse fields found numerically for both cases
of high medium density in Figs. 3 and 5. The direct com-
FIG. 6. (a) Temporal shape of the electric field, (b) polariza-
tion (solid line) and population (dashed line) at z � 120 mm
for vc � 2 fs21, V0 � 4.4 fs21, L � 150 mm. Diamonds
represent the solution (3). (c) Spectrum of the first high-
frequency pulse (solid line), second (long-dashed line), and
third (short-dashed line) unipolar pulses at z � 120 mm.

parison of analytical and numerical solutions for vc �
1 fs21 is shown by diamonds in Fig. 3.
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