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Yrast Line for Weakly Interacting Trapped Bosons
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We compute numerically the yrast line for harmonically trapped N-boson systems with a weak repul-
sive contact interaction, studying the transition to a vortex state as the angular momentum L increases
and approaches N . There is a smooth crossover between low and high L with no indication of a quantum
phase transition; at L � N there is a kink in the slope of the spectrum. Most strikingly, the energy and
wave function appear to be analytical functions of L over the entire range 2 # L # N . We confirm the
structure of low-L states proposed by Mottelson as mainly single-particle excitations with two or three
units of angular momentum.

PACS numbers: 03.75.Fi, 05.30.Jp, 67.40.Db
The low-lying excitations of atomic Bose-Einstein
condensates in harmonic traps [1–3] are of consider-
able experimental and theoretical interest [4]. Recently,
Mottelson proposed a theory for the yrast line of weakly
interacting N-boson systems [5], i.e., the ground states
at nonvanishing angular momentum L. Physical argu-
ments led him to assume that the yrast states are excited
upon acting on the ground state j0� of vanishing angular
momentum with a collective operator Ql �

PN
p�1 zl

p
that is a sum of single-particle operators acting on the
coordinates zp � xp 1 iyp of the pth particle. For
angular momenta L ø N the yrast states are found to be
dominated by quadrupole �l � 2� and octupole �l � 3�
modes. Assuming a vortex structure of the yrast states
with L � N then led to the prediction of a quantum
phase transition in Fock space when passing from the low
angular momentum regime L ø N to the regime of high
angular momenta L � N . The reason for this behavior
is the approximate orthogonality of the collective states
Qlj0� and the single-particle oscillator states of the vortex
line in the regime N1�2 ø L. These results have been
obtained for harmonically trapped bosons with a weak
repulsive contact interaction. The case of an attractive
interaction has been studied by Wilkin et al. [6]. In this
case the total angular momentum is carried by the center
of mass motion, and there are no excitations corresponding
to relative motion. This is not unexpected since internal
excitations would increase the energy of the yrast state.

It is the purpose of this Letter to present an independent
numerical computation of the yrast line and to compare
with Mottelson’s results [5]. In particular, we want to fo-
cus on the transition from low to high angular momentum
yrast states. The investigation of this transition is of inter-
est not only for the physics of Bose-Einstein condensates.
Localization in Fock space is also under investigation in
molecular [7] and condensed matter physics [8,9]. The
numerical computation has the advantage that it does not
rely on the assumptions made in the analytical calcula-
tion. However, with our numerical methods it is limited to
angular momenta below about L � 50. Most interestingly,
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our numerical results suggest that the yrast line and the
corresponding wave functions can be presented by rather
simple analytical expressions.

Let us consider N bosons in a two-dimensional har-
monic trap interacting via a contact interaction. (The
results obtained below extend to the three-dimensional
problem for L � Lz .) We are interested in the yrast line in
the perturbative regime of weak interactions. Note, how-
ever, that experimental studies of trapped condensates are
often in a regime where the interaction energy is com-
parable to the trapping potential, and this may introduce
qualitatively different physics. We write the Hamiltonian
as

Ĥ � Ĥ0 1 V̂ . (1)

Here

Ĥ0 � h̄v
X

j

jâ
y
j âj (2)

is the one-body oscillator Hamiltonian and

V̂ � g
X

i,j,k,l

Vijkl â
y
i â

y
j âkâl (3)

is the two-body interaction. The operators âm and ây
m

annihilate and create one boson in the single-particle os-
cillator state jm� with energy mh̄v and angular momen-
tum mh̄, respectively, and fulfill bosonic commutation
rules. The ground state energy is set to zero. Up to
some irrelevant overall constant, the matrix elements are
given by Vijkl � 22k2l�k 1 l�!��i! j! k! l!�1�2 and vanish
for i 1 j fi k 1 l. For total angular momentum L, the
Fock space is spanned by states ja� � jn0, n1, . . . , nk� withP

i�0,k ni � N , â
y
j âjjn0, n1, . . . , nk� � njjn0, n1, . . . , nk�,

and
P

j�0,k jnj � L. Here nj denotes the occupation
of the jth single-particle state j j�. For vanishing cou-
pling g the basis states are degenerate in energy, and the
problem thus consists of diagonalizing the two-body in-
teraction V̂ inside the Fock space basis. To set up the
matrix we act with the operator (3) on one initial basis
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state with angular momentum L and on all states cre-
ated by this procedure until the Fock space is exhausted
[10]. The resulting matrix is sparse, and the yrast state
is computed using a Lanczos algorithm [11]. We re-
strict ourselves to L # 50 corresponding to a maximal
Fock space dimension of about dL � 2 3 105.

The yrast line, i.e., the ground state energies as a func-
tion of the angular momentum, may be written as

E�L� � Lh̄v 1 geL . (4)

Figure 1 shows the L dependence of the energies eL for
systems of N � 25 and 50 bosons. The energies eL simply
decrease linearly with increasing angular momentum for
L # N . In fact, to machine precision, the energy function
is found to be described by an algebraic expression,

eL �
N�2N 2 L 2 2�

2
. (5)

At fixed angular momentum L and for L ø N the energies
gel increase as expected with the square of the number of
bosons N . Notice in the figure that there is a kink in the
slope at N � L. This is a hint of condensation into a vortex
state: in macroscopic superfluids, the state for L � N
would have a condensate of unit angular momentum and
would be lower in energy than neighboring yrast states.

We next investigate the structure of the wave functions
of yrast states. We would like to know how complex the
states are and how well they can be described by single-
particle operators acting on simple states. To address the
question of the complexity of the states in the Fock basis,
we take the wave function amplitudes c�L�

a in the Fock
representation of the state,

jL� �
dLX

a�1

c�L�
a ja� ,

and compute the inverse participation [12],

IL �
dLX

a�1

jc�L�
a j4.

FIG. 1. Interaction energy eL as a function of angular momen-
tum L for systems of N � 50 (circles) and N � 25 (triangles)
bosons.
The IL is the first nontrivial moment of the distribution
of wave function intensities jc�L�

a j2. Its inverse 1�IL mea-
sures the number of basis states ja� that have significant
overlap with the yrast state jL�. Figure 2 shows a plot
of 1�IL and the Fock space dimension dL as a function
of angular momentum L for a system of N � 50 bosons.
The 1�IL is seen to be much smaller than the dimension-
ality of the Fock space. Even where the participating is
greatest, at midvalues of L, only about 30 states are active
participants. A similar behavior of quantum nonergodic-
ity was found previously in numerical studies on conden-
sate formation [10]. Notice that the inverse participation
ratio decreases strongly as N � L is approached. This
shows that the yrast state becomes simpler, again hinting
at the formation of a vortex condensate. Examining the
coefficients for N � 25 in detail, the largest amplitude
at L � N is in fact the vortex state, ja� � j0N0 . . . 0�,
but it has less than half the probability of the complete
wave function. Interestingly, our numerically obtained
yrast state jL � N � 25� agrees with the conjecture given
by Wilkin et al. [6], i.e., jL � N� �

QN
p�1 �zp 2 zc� j0�,

with zc � N21
PN

p�1 zp being the center of mass. Based
on our numerical wave functions, we can generalize this
conjecture. We believe that all of the yrast states for
2 # L # N are given by the expression

jL� � N
X

p1,p2,...,pL

�zp1 2 zc�

3 �zp2 2 zc� . . . �zpL 2 zc� j0� , (6)

where N is a normalization constant. We have verified
that this formula is correct (up to machine precision) by
comparison with the numerically obtained yrast states for
N � 25. Since the operator acting on the ground state is
translationally invariant, no quanta of the center of mass
motion are excited. Notice that there is a natural termina-
tion of the construction at L � N .

FIG. 2. Number of participating Fock states 1�IL (circles) and
Fock space dimension dL (squares) as a function of angular
momentum L for a system of N � 50 bosons.
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FIG. 3. Occupation numbers of the lowest single-particle os-
cillator states as a function of angular momentum L for a system
of N � 50 bosons ( j � 0, diamonds; j � 1, squares; j � 2,
circles; j � 3, triangles).

To further examine the structure of the yrast
states jL� we show a plot of the occupation numbers
n

�L�
j � �Ljây

j âjjL� for j � 0, 1, 2, 3 in Fig. 3 for a system
of N � 50 bosons. At very low angular momenta the
yrast states are dominated by single-particle oscillator
states with two or three units of angular momentum. This
is in agreement with Mottelson’s results [5]. However,
at larger angular momentum L, the dominant fraction is
carried by single-particle states with one unit of angular

momentum. Note that the occupation numbers n
�L�
j are

very small for j . 3. This analysis confirms the results
found for the inverse participation ratio. Note also that the
observables n

�L�
j are very smooth functions of L. If there

were a quantum phase transition at large L � N�2, we
would expect to see some precursor in these observables.

Finally, we note that vortices have been recently ob-
served in a two-component condensate [13]. This study
found a smooth transition to the vortex state. While sug-
gestive, this result cannot be considered a confirmation of
the absence of a phase transition in the single-component
weakly interacting case.

In conclusion, our numerical study strongly indicates
that there is no quantum phase transition to a vortex state
for trapped condensates in the limit where the interaction
potential is small compared to the oscillator frequency. The
strongest evidence is the apparent existence of analytical
expressions for the energies and the wave functions on the
5414
yrast line for 2 # L # N . One might speculate that these
states are contained in a dynamical symmetry group, but
we have no idea how this might come about. [We also
note that there is another symmetry group [14], SO�2, 1�,
that produces relationships between energies of different
states within a single L subspace.] We have also examined
the structure of the yrast states and the matrix elements
between them, finding that the observables vary smoothly
with L, for not too small L.
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