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Phase Defectsin Self-Focusing of Ultrashort Pulses
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We report the numerical observation of edge-type phase defects which occur during the self-focusing
of ultrashort pulses. We identified two distinct kinds of defects, formed at the temporal or spatial edges
of the pulse. We show the effect of phase defect creation on the dynamics and the eventual arrest of
the self-focusing process. Phase defects often lead to the inversion of the phase fronts curvature,
transforming contracting pulses into expanding pulses.

PACS numbers: 42.65.Jx, 41.20.Jb, 42.65.Sf, 42.65.Tg

Self-focusing of light beams inside a nonlinear Kerr
medium was investigated extensively in the early days
of nonlinear optics [1]. A high power light beam may
focus by creating for itself a lendlike index profile via
the Kerr effect. When light is free to diffract only along
one transverse direction, as in a planar waveguide, self-
focusing can lead to the formation of a stable self-trapped
light beam—a spatial soliton [2]. However, stable self-
trapping does not occur in the case of two transverse
dimensions. When the beam has a power above a critical
value, it collapses to a very small size, usually resulting
in material damage [3]. Mathematically, the solution of
the standard paraxial wave equation in this case predicts
collapse into a singular point. This collapse is avoided
when the nonlinear index saturates [4], in the presence of
nonlinear absorption [5], or when nonparaxial corrections
were taken into account [6].

In contrast to a continuous light beam, the self-focusing
dynamics of short light pulses has been investigated only
lately. For such pulses, dispersion playsarolevery similar
to diffraction [2,7]. A short pulse broadens in space
by diffraction and in time by dispersion. The roles of
dispersion and diffraction are even more similar in the
case of anomalous dispersion. The evolution of optical
pulses in a planar waveguide with anomalous dispersion
is equivalent to self-focusing of a continuous beam in
three dimensions [8]. According to standard analysis,
both cases are described by the same 1 + 2 nonlinear
Schrédinger equation (NL SE), which predicts acollapse to
asingular point. A high intensity short pulse propagating
in an anomalous dispersive medium is therefore expected
to collapse not only in space, but also intime. It has been
shown that in the normal dispersion regime, temporal pulse
broadening tends to counteract the spatial self-focusing,
leading often to pulse splitting [9,10].

The modeling of self-focusing as described above is
usually performed using the NLSE, which is derived using
the slowly varying amplitude approximation [11]. This
approximation is questionable in both cases. when ana-
lyzing the collapse of ultrashort pulses which contain just
a few optical cycles and when modeling propagation of
beams of a wavelength scale. Using this approximation

540 0031-9007/ 99/ 83(3) /540(4) $15.00

is even more doubtful in the case of spatiotemporal focus-
ing where the two limits are reached. Recently, several
groups studied numerically the propagation of light pulses
in nonlinear media by solving directly Maxwell’s equa-
tions [12—16]. These methods do not use the standard
approximations. As the electric field equations are solved
directly, complete information on the instantaneous elec-
tric field is retained. High harmonics and waves propa-
gating backwards, as well as in al other directions, are
included in this model, unlike in the common beam prop-
agation schemes[17]. In this paper, we use such a model
in order to show that phase evolution, and in particular
the appearance of phase singularities, are crucia for un-
derstanding the stability and dynamics of self-focusing of
ultrashort pulses.

Using this scheme, it has been shown [12,13] that
spatiotemporal symmetric pulses close to the critica
power appear to be stable for a significant distance [18].
These pulses resemble light bullets— pulses that maintain
their spatial and temporal structure [8]. Pulses that have
dlightly higher powers start to contract, but then they stop
and disperse. Even stronger pulses often split into two
weaker pulses. We examined these solutions and found
that these effects are connected with the appearance of
phase singularities, which explains this dynamic behavior.

The simulations use a finite difference scheme in the
time domain, propagating a given field by small steps
in time, as described by Goorjian et al. [12]. The time
convolution integrals involved in the linear dispersion are
trandated into differential equations, hence, information
has to be kept only one step backward. The medium
is modeled as a two-level system; all orders of disper-
sion are included and there is no need to add them arti-
ficially. In order to induce anomalous dispersion in this
simplified model, the resonance is assumed to be below
the carrier frequency, and e.. is nonzero. We assumed
optical period of 5.15 fs, which corresponds to a wave-
length of 1.55 wm in vacuum. We ran the simulations on
a grid of 2000 X 300 cells of the size 8 X 50 nm each.
The longer side was along the propagation direction and
the other transverse direction was where diffraction took
place. Since all the simulations involved the propagation
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of pulses, we continuously shifted the fields to keep the
pulse centered in the grid. This is possible as long as
dispersion effects do not broaden the pulses beyond the
length of the grid. The parameters used in the modeling
of the dispersion are the same as used in Ref. [18]. A run
of 25000 steps of 2.7 X 107! s on a Pentium 200-MHz
processor took about 10 hours. On some of the simula
tions, absorption was added to the edges of the grid in
order to avoid edge reflections. It did not change the na-
ture of the phenomena reported here.

Some basic features of nonlinear short-pulse propaga-
tion can be observed in Fig. 1, where the pulse propagates
from the bottom to the top. Electric field values are shown
as gray levels, gray represents zero value, and positive
(negative) values are shown as bright (dark) shades. Also
shown are lines of zero field, which highlight the phase
fronts of the propagating pulses. Only a small part of the

of the main pulse into the nonlinear medium [16]. This
pulse is observed to propagate faster than the main pulse
due to anomalous dispersion (Fig. 1c).
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FIG. 1. The pulse phase fronts contain information about its

dynamics. (a) A diverging pulse with a positive phase front

curvature. (b) A converging pulse during self-focusing with a

negative phase front curvature. (c) A propagating pulse with its

companion third harmonic pulse that was generated when the

pulse entered the nonlinear medium. This frame was taken
a + = 160 fs after the entrance of the main pulse into the
nonlinear medium.

At these high intensities, the phase fronts exhibited
interesting behavior, which was linked to the dynamics of
the evolving pulses. Since the pulse center experiences
a higher refractive index due to its higher intensity, it
propagates with a smaller group velocity than the low-
intensity wings, resulting in a negative curvature of the
phase fronts. This is the basic process that leads to
the deformation of the pulse phase fronts and to self-
focusing. Similarly, the difference between the velocity
of the slow pulse center and its faster head and tail leads
to deformation of the carrier wave and to the creation
of new frequencies. We found that the transverse and
longitudinal deformations of the phase fronts often led to
creation of edge defects in the phase fronts [19].

We identified two distinct kinds of defect creation
during the self-focusing process. In the first kind, the
difference in the group velocity between the pulse center
and its head and tail stretches and sgueezes the leading
and trailing phase fronts, respectively. This deformation
is clearly seen in Fig. 1b. Eventually, a stretched phase
front may split locally into two, or a squeezed phase front
can be broken. Consider the simulation results shown in
Fig. 2 [20]. A time-space symmetric pulse (a pulse that
diffracts and disperses at the same rate) is launched close
to the critical power. The phase fronts acquire a small
negative curvature, leading to a slight contraction. More
dramaticaly, the phase fronts in the leading edge are
stretched, while those in the trailing edge are compressed.
Fig. 2a shows that an edge didlocation pair was created in
the tail of the pulse due to the squeezing out of one crest
of thewave. The two defects can be seen in Figs. 2b—2d

o
o

il
i

FIG. 2. Phase defects of the first kind, created behind the
pulse. (@) The pulse pushes back, squeezing one crest, resulting
in a pair of phase defects (r = 192 fs). (b),(c): The phase
defect pair overtakes the pulse from both sides due to the fact
that the phase velocity is larger than the pulse group velocity.
While the defects are propagating, they flip the curvature of
the phase fronts that they pass (+ = 216 fs and ¢ = 245 fs).
(d) The two defects meet at the front of the pulse and annihilate
each other (1 = 264 fs).
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as they overtake the pulse from both sides, since the phase
velocity is larger than the pulse group velocity. While the
two defects are diding around the pulse, they replace each
wave front going out of the pulse center with the wave
front before. As a result, the negatively curved phase
fronts become positively curved. Note, for example, in
Fig. 2c that the phase fronts in the front of the pulse
are concave, while behind the dislocation the fronts are
convex. When the two defects meet in the front side of
the pulse, they annihilate each other. The curvature of
all wave fronts has been now inverted, the self-focusing
process stops, and the pulse starts to expand.

The difference between the group velocity of the pulse
center and its wings could cause defects of a second kind
to be created. A row of phase fronts close to the pulse
center tears apart and jumps one wavelength backwards.
Thisjump resultsin two pairs of defects, one near the head
and one near the tail of the pulse. The local curvature of
the phase fronts changes sign and the collapse is stopped
temporarily. Thisis exemplified in the simulation shown
in Fig. 3. The pulse has the same energy as in Fig. 2,
but it is now asymmetric—it is three times wider, and
therefore it diffracts ower. The difference between the
group velocities of the pulse center and its wings causes a
strong deformation of the phase fronts (Fig. 3b) until they
eventually tear along the edges of the pulse creating several
pairs of defects (Fig. 3c). All these defects eventually
annihilate by moving to the front of the pulse: by then,
the entire pulse is practically shifted one wavelength
backwards. This shift leads to an inversion of curvature,
and the concave wave fronts of Fig. 3a are al inverted
in Fig. 3d. Self-focusing has been arrested, and the pulse
starts to broaden. If the intensity is high enough, the
process could repeat itself (Figs. 3e, 3f) until the peak
power of the diverging field has been reduced sufficiently.

It is worth noting that similar defects appeared in many
of our simulations, for various optical power and spa-
tiotemporal shapes. In particular, we found that defects
were created also for pulses of considerably higher power,
that eventually collapsed, but their dynamics was fast and
abrupt. We believe that phase defects are ubiquitous in
self-focusing.

Phase defects are not new in optics. Screw dislocations
have been investigated extensively. They are encountered
when a two dimensional spatial phase front has a singu-
larity, known in optics as an optical vortex [21,22]. The
field at the defect location is zero due to the phase ambigu-
ity around it. The defects are accompanied by a canonical
angular momentum of their field [23]. This angular mo-
mentum is usually conserved, which means that for every
positively charged vortex that is created, there will be a
negative one too.

In contrast with screw dislocations, edge defects appear
as a bifurcation or a sudden end of a phase front along the
transverse spatial dimension, a phenomenon known as an
edge dislocation [19]. Edge dislocations are also formed
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in pairs because of the conservation of the field canonical
angular momentum. All optical defects that have been
studied to date have occurred in the two dimensional
spatial plane of light beams. To the best of our knowledge,
this is the first numerical observation of a spontaneous
creation of defects in the spatiotemporal domain.

We aso found that edge defects may cause pulses to
split. The reason for splitting is the zero electric field in
the defects center. Defects of thefirst kind, that are created
in front or behind the pulse, can split it in the time domain.
Usually a pulse will split into two pulses, one main pulse
where most of the energy remains and a smaller pulse
ahead of the main pulse. After splitting, the pulses move
apart due to the different frequencies they contain and the
group velocity dispersion. A phase jump of the second
kind, as shown in Fig. 3, may divide the pulse into three
parts—one main central pulse and two weaker satellite
pulses on both sides.

In conclusion, we reported numerical observation of
spatiotemporal defects of the electric field, which are
created during self-focusing of short optica pulses in
two dimensions. Using a finite-difference scheme, we

(

I i

Ul

|

]

bl

FIG. 3. Phase defects of the second kind, created at the
pulse edges. (a),(b) Phase fronts are deformed due to the
slower velocity of the pulse center (r = 480 fsand ¢ = 533 fs).
(c) Two pairs of defects are formed as phase fronts are torn.
Another defect pair of the first kind is created behind the pulse
(r = 560 fs). (d) All the defects advance to the pulse front due
to their larger phase velocity and are annihilated there. Note
the inversion of the local phase front curvature and the arrest
of the collapse (r = 640 fs). (e),(f) Secondary defects of the
second kind are created at the pulse outer regions (r = 720 fs
and ¢ = 747 fs).
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integrated directly Maxwell’s eguations for the electric
field. We found that while phase fronts are deformed
during self-focusing, their continuity is not necessarily
preserved. Edge defects are created when the phase fronts
are strongly deformed. These defects affect the dynamics
of self-focusing, leading often to its arrest. In some
cases, pulse splitting in the temporal or transverse spatia
directions may occur. It is conceivable that phase defects
of the second kind could aso play a part in continuous
wave self-focusing in bulk media. This has to be verified
in additiona studies.
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