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We define cryptographic assumptions applicable to two mistrustful parties who each control two or
more separate secure sites between which special relativity ensures a time lapse in communication. We
show that, under these assumptions, unconditionally secure coin tossing can be carried out by exchanges
of classical information. We then show that, under standard cryptographic assumptions, coin tossing is
strictly weaker than bit commitment. That is, no unconditionally secure bit commitment protocol can
be built from a finite number of invocations of a secure coin-tossing black box together with finitely
many additional classical or quantum information exchanges.

PACS numbers: 03.67.Dd, 89.70.+c
The problem of remote coin tossing was introduced
into the cryptographic literature in a classic 1981 paper
by Blum [1]. A coin-tossing protocol involves two mis-
trustful separated parties who wish to use an information
channel—e.g., a phone line—to generate a bit in whose
randomness both are confident.

Coin tossing is a simple cryptographic primitive with
many applications in more complicated tasks. To give
a well known example, it can be used to authenticate a
remote user, say to their bank, as follows. The user’s N
digit passkey is known to both user and bank. Whenever
the user logs in, a series of coin tosses between the user
and bank are used to generate a random n digit substring
of the N digits, where n is significantly smaller than N .
The user is then required to reveal only those n digits of
the passkey, and is accepted if they agree with the bank’s
records. This has the virtue that neither an eavesdropper
nor someone impersonating the bank can obtain very
much of the passkey during a small number of logins;
in particular, neither has much chance of subsequently
successfully convincing the bank that he is the user. By
changing the passkey at appropriate intervals, security can
thus be maintained.

Coin tossing also raises interesting theoretical ques-
tions, in that its relation to other primitives has not so
far been resolved.

Bit commitment is another well known cryptographic
primitive of great theoretical and practical interest, also
involving two mistrustful parties. In a bit commitment
protocol, one party, Alice, supplies an encoded bit to
another, Bob. Alice tries to ensure that Bob cannot
decode the bit until she reveals further information, while
convincing Bob that she was genuinely committed all
along. That is, Bob must be convinced that the proto-
col does not allow two different decodings of the bit
which leave Alice free to reveal either 0 or 1, as she
wishes.

It is well known that secure coin tossing can easily be
implemented given a secure bit commitment protocol (see,
e.g., Ref. [2]). Alice commits a random bit to Bob, who
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makes a random guess at it. Alice then unveils the bit, and
the parties generate (say) a 0 if Bob’s guess was correct,
and a 1 otherwise.

This raises the question of whether the reverse is pos-
sible. As is by now well understood, quantum information
has very different properties from classical information.
In particular, some important cryptographic tasks can be
implemented securely using quantum information, but not
using classical information [3,4]. Thus, the question of
the relation of coin tossing and bit commitment subdivides
into at least two independently interesting questions:
whether secure bit commitment can be built on top of
secure coin tossing using (i) classical or (ii) quantum
information exchanges. Both questions appear to have
remained open to date (see, e.g., Ref. [5]).

There are many forms of security, of which the
strongest and most interesting is unconditional security:
an unconditionally secure protocol relies only on the
known laws of physics to ensure that the probability of
successful cheating by either party can be made arbitrar-
ily small. Under standard nonrelativistic cryptographic
assumptions, unconditionally secure quantum bit com-
mitment is impossible [5–9]. We follow general usage
in referring to this result as the Mayers-Lo-Chau no-go
theorem or MLC theorem.

Unconditionally secure ideal coin tossing—that is, coin
tossing with probabilities precisely one-half—has also
been shown to be impossible by Lo and Chau [9].
However, it is not known whether nonideal coin toss-
ing, in which the probabilities are bounded by � 1

2 6 e�,
and e can be made arbitrarily small, can be imple-
mented with unconditional security in quantum theory.
Clearly, if it can be shown that quantum bit commit-
ment can be built on top of coin tossing, then uncondi-
tionally secure quantum coin tossing must be impossible.
Conversely, if it can be shown that quantum bit com-
mitment cannot be built on top of coin tossing, we have
no conclusive argument showing that an unconditionally
secure quantum coin tossing protocol cannot be found.
Such a protocol would be very useful.
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The main result of this paper resolves the relation
between the two protocols by showing that secure bit
commitment cannot be built on top of secure coin tossing
in any finite classical or quantum protocol. Though this
result applies to standard nonrelativistic cryptography,
its proof is inspired by considering cryptography in the
context of relativity.

The standard nonrelativistic cryptographic scenario for
two mistrustful parties is as follows. A and B each con-
trol a laboratory, which includes sending and receiving
equipment, measuring devices and classical and perhaps
quantum computers. The laboratories are separated and
generally assumed to be small. A and B have faith in
the integrity of their own equipment but trust nothing
whatsoever outside their laboratories. In particular, nei-
ther of them has any way of ensuring that a message sent
by the other was sent a certain time before receipt, and so
an effectively simultaneous exchange of messages cannot
be arranged. A standard cryptographic protocol thus pre-
scribes a sequential exchange of messages between A and
B, in which message i 1 1 is not sent until the sender has
received message i.

We will also need to consider an alternative crypto-
graphic scenario in which special relativity plays a role.
Alice and Bob agree on a frame and global coordinates,
and on the location of two sites x1, x2 whose neighbor-
hoods Bob may control at all times. Alice is not allowed
within a distance e of either point at any time. Alice
is, however, required to erect laboratories within a dis-
tance d of the sites, where Dx � jx1 2 x2j ¿ d . e.
The precise location of Alice’s laboratories need not be
disclosed to Bob: he need only test that signals sent out
from either of his laboratories receive a response within
time 2d. Bob could, for example, build laboratories of
radius e around each of the xi , but the precise location
of his laboratories need not be known to Alice. She need
only test that any signal broadcast from one of her labo-
ratories receives a reply within time 2d, whenever, her
laboratory is in the prescribed region. Let the laboratories
near xi be Ai and Bi , for i � 1 or 2. We assume that
the Ai collaborate with complete mutual trust and with
prearranged agreement, and identify them together sim-
ply as Alice; similarly the Bi are identified as Bob. From
the point of view of cryptographic analysis, any proto-
col in this scenario may be considered as a two-party
cryptographic protocol. The only unusual cryptographic
feature is that the parties each occupy disconnected labo-
ratories, and even this is inessential: A and B could
equally well occupy laboratories that are connected, long,
thin, and adjacent on their longer side. The crucial dif-
ference from standard analyses is that the relativistic sig-
nalling constraints which this situation imposes are taken
into account.

There is a very simple unconditionally secure classical
protocol for ideal coin tossing under these circumstances.
At a prearranged time t, A1 generates a random bit and
sends it to B1; at the same time, B2 generates a random
bit and sends it to A2. More precisely, since the time
of sending cannot be checked directly, the bits are sent
at or after time t, and so as to arrive before time t 1 d

in each case. The Ai and Bi then compare the bits they
sent and received—which, of course, involves a delay
of order Dx. If the two bits are equal, the protocol
generates a 0; if unequal, a 1. The separation of the
laboratories means that each party can be confident that
the other’s bit was sent in ignorance of their own. Each
party can hence be confident of the randomness of the
generated bit. Quantum attacks clearly do not affect the
protocol’s security, since it relies only on the causal
relations of special relativity, so that the protocol also
defines an unconditionally secure quantum coin-tossing
protocol.

On the other hand, a simple application of the Mayers-
Lo-Chau argument [5,8] shows that no classical or quan-
tum bit commitment protocol that uses a finite sequence
of messages can be permanently unconditionally secure in
this scenario. By permanent security, we mean here that
after the protocol is concluded, it remains indefinitely im-
possible for Alice or Bob to cheat, no matter how much
information is transferred between the Ai or between the
Bi . Clearly, this cannot be attained by a finite protocol,
since after the protocol is concluded, all data that the Ai

hold or receive can, after a finite time interval, be trans-
ferred to one representative, say A1; similarly the Bi can
transfer all their data to B1. At this point, the situation is
identical to that after the implementation of a quantum bit
commitment protocol in the standard scenario.

To see this, note that the Ai and Bi can carry out
every step in any relativistic protocol at the quantum
level. In particular, any random choices required by the
protocol can be kept at the quantum level by entangling
suitably chosen “quantum dice”—ancillary systems in a
state

P
i piji�—with the transmitted states via a quantum

computer. If both Ai (or both Bi) are required to make the
same random choice at spacelike separated points, they
can do so, using previously constructed shared random
dice, with states of the form

P
i piji�1ji�2, where the j �i

states are under the control of the ith party. After the
end of the finite protocol, all the quantum information
held by A2 can be given to A1, and all the quantum
information held by B2 can be given to B1. We then
have a situation in which A1 and B1 share some pure state
jc� lying in the tensor product Hilbert space HA ≠ HB,
where HA and HB describe the degrees of freedom under
the control of A1 and B1, respectively. This is precisely
the situation analyzed by Mayers, Lo, and Chau, and their
theorem applies: either B1 can cheat by distinguishing
the commitments of 0 and 1 with nonzero probability
before revelation, or else A1 can follow the protocol
for committing a 0 and then cheat to reveal a 1 with
nonzero probability, and the two cheating probabilities
cannot simultaneously be small [6,9].
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It follows that coin tossing is a weaker primitive than
bit commitment in the relativistic scenario outlined. Per-
haps more surprisingly, it follows also that coin tossing
is weaker under standard cryptographic assumptions. For
suppose there were a finite standard bit commitment pro-
tocol which was provably secure modulo the security of
a coin-tossing black box. That is, Alice and Bob have
some trusted way of generating random bits between them,
and build up a secure bit commitment protocol by a finite
sequence of classical or quantum communications inter-
spersed with finitely many invocations of the random bit
generation. Any such protocol could be transferred to the
relativistic scenario, by replacing the classical and quantum
communications between A and B by identical communi-
cations between A1 and B2, and replacing the coin-tossing
black box by implementations of the above secure quan-
tum coin-tossing protocol involving the Ai and Bi . So long
as the messages are carried out in the same sequence, the
bit commitment protocol would necessarily remain secure
in the relativistic scenario. But we have seen that no se-
cure finite bit commitment protocol exists in this scenario.
Hence the initial assumption must be impossible: there is
no finite permanently secure standard bit commitment pro-
tocol built on a secure coin-tossing black box.

It has recently been shown that unconditionally secure
bit commitment protocols based on an indefinite exchange
of messages do exist in the relativistic scenario [10,11].
We have seen here another intriguing aspect of the
interplay between relativity and information: relativistic
cryptography appears to provide not only new practically
useful protocols—of which the coin tossing protocol
above is an example—but also a useful perspective on
standard cryptographic relations. It should be noted,
however, that while relativistic considerations motivate
the proof, they are not essential in establishing the result.
The only essential relativistic ingredient we have used is
the guarantee of a time delay in communicating between
certain representatives of A and B, and the proof can be
recast abstractly using only this property.
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Finally, it is worth noting that cryptographic tasks give
a way of calibrating the properties of information in any
physical theory, correct or not, by asking whether or not
any given task can be securely implemented. The fact that
coin tossing is strictly weaker than bit commitment means
they define distinct calibrations of physical information.
It would be interesting, and perhaps theoretically useful,
to use the hierarchy of cryptographic protocols as a way
of isolating different properties of information which can
be realized in different physical models.
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