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We find that ground states of the quantum Heisenberg antiferromagnet on the geometrically frustrated
pyrochlore checkerboard lattice are singlets and can be expressed in terms of positive matrices. The
magnetization at zero external field vanishes for each frustrated tetrahedral unit separately, and there
is an upper bound of 1�8 in natural units on the susceptibility both for the ground state and at finite
temperature. These results are the first exact ones in this field and generalize to some other lattices.
The approach is also of interest for other spin systems.

PACS numbers: 75.10.Jm, 05.50.+q, 75.40.Cx, 75.45.+ j
Geometrically frustrated spin systems are known to
have many interesting properties that are quite unlike
those of conventional magnetic systems or spin glasses
[1]. Most results are for classical systems. The first frus-
trated system, for which the richness of classical ground
states was noted, is the triangular lattice [2]. Subse-
quently, the pyrochlore lattice, which consists of tetrahe-
dra that share sites, was identified as a lattice on which
the frustration effects are especially strong [3]. Unusual
low-energy properties, in particular the absence of order-
ing at any temperature, were predicted for both discrete
[3] and continuous [4] classical spin systems. The ground
state and low-energy properties of the classical pyrochlore
antiferromagnet—whose quantum version is the focus of
this Letter—has been extensively studied in [5]. Both the
interest and difficulty in studying frustrated spin systems
stem from the large ground state degeneracy, which pre-
cludes most perturbative approaches.

As is the case for most other strong interacting sys-
tems in more than one dimension, very little is known ex-
actly about the ground states of frustrated quantum spin
systems. Most of the present knowledge has been ob-
tained by numerics or clever approximations. Quantum
fluctuations have been studied in the limits of large S [6],
where a tendency towards lifting the ground state degener-
acy in favor of an ordered state (“quantum order by disor-
der”) was detected. In the opposite limit, S � 1�2, where
quantum fluctuations are much stronger, the pyrochlore
antiferromagnet has been identified as a candidate for a
quantum disordered magnet (“quantum spin liquid”) [7],
and it has also been discussed in terms of a resonating va-
lence bond approach [8]. However, there are no exact re-
sults against which to test the reliability of the results in this
limit. In contrast to this, for conventional—bipartite—
antiferromagnetic spin systems it is well known, for ex-
ample, that the energy levels are ordered in a natural way
according to spin, starting from spin zero [9]. Geometri-
cally frustrated systems are not bipartite and thus this oth-
erwise quite general theorem does not apply.

In this Letter, we find some first exact results for the
fully frustrated quantum antiferromagnet on a pyrochlore
checkerboard, with the help of the reflection symmetry of
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this two dimensional lattice. We shall establish rigorously
that there is always a ground state with total spin zero.
Furthermore, in the periodic case all ground states (if
there is more than one) have total spin zero, the spin
expectation vanishes for each frustrated unit (this is the
quantum analog of the ice rule for the Ising system), and
there are concrete upper bounds on the susceptibility.

Geometric frustration occurs typically for spin systems
with interactions that favor antialignment and involve
fully connected units of three or more spins that can
obviously not all be mutually antialigned. The kagome
lattice is an example of frustrated spin systems with site-
sharing triangular units; the pyrochlore lattice and its
two-dimensional version, the pyrochlore checkerboard, are
examples with site-sharing tetrahedra. We shall focus on
the latter; it is a two-dimensional array of site-sharing
tetrahedra, whose projection onto a plane is a square lattice
with two extra diagonal bonds on every other square. (The
regular pyrochlore lattice is a three-dimensional array of
site-sharing tetrahedra.) The tetrahedra, or squares with
extra diagonal bonds, are the frustrated units and will
henceforth be called boxes.

The Hamiltonian of a quantum Heisenberg antiferro-
magnet on a general lattice is (in natural units)

HAF �
X
�i,j�

si ? sj , (1)

where the sum is over bonds �i, j� that connect sites
i and j and s � �s1, s2, s3� are spin operators in the

FIG. 1. (a) Pyrochlore checkerboard, reflection symmetric
about dashed line; (b) frustrated unit with crossing bonds.
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spin-s representation, where s can be anything. For the
checkerboard lattice the Hamiltonian is up to a constant
equal to half the sum of the total spin squared of all boxes
(labeled by x),

H �
1
2

X
x

�s1 1 s2 1 s3 1 s4�2
x . (2)

A 3 3 3 checkerboard with periodic boundary condi-
tions, i.e., with four independent sites, provides the sim-
plest example. It has a Hamiltonian that is (up to a
constant) the total spin squared of one box, and the en-
ergy levels, degeneracies, and eigenstates follow from the
decomposition of the Hilbert space of four spin-s particles
into components of total spin; all ground states have total
spin zero, and there are 2s 1 1 of them.

A checkerboard lattice of arbitrary size, with or without
periodic boundary conditions but with an even number
of independent sites, has the property that it can be split
into two equal parts that are mirror images of one another
about a line that cuts bonds, as indicated in Fig. 1, and that
contains no sites. We shall now show that such a system
has at least one spin-zero ground state. It is actually not
important, for the following argument, what the lattice
looks like on the left or right; these sublattices neither
need to be checkerboards nor do they have to be purely
antiferromagnetic (as long as total spin is a good quantum
number). What is important is that the whole system is
reflection symmetric about the line that separates left and
right and that the crossing bonds are of checkerboard type.
[For a system with periodic boundary conditions (PBCs)
in one direction there will actually be two such lines, but
we emphasize that PBC is not needed here even though
it is needed in the usual reflection positivity applications;
see [10] and references therein.] A key observation is
that these crossing bonds [solid lines in Fig. 1(b)] form
antiferromagnetic bonds SL ? SR between pairs of spins
SL � s1 1 s2 and SR � s3 1 s4 of each box on the
symmetry line.

The Hamiltonian is H � HL 1 HR 1 HC , where HL

and HR act solely in the Hilbert spaces of the left and
right, respectively, subsystems and HC contains the cross-
ing bonds. For the checkerboard HC �

P
y��s1 1 s2� ?

�s3 1 s4��y , with the sum over boxes y that are bisected
by the symmetry line. HL and HR are completely arbi-
trary as long as they commute with the total spin operator.
We will, however, assume here that they are real in the S3

basis. Any state of the system can be written in terms of
a matrix c as

c �
X
a,b

cabcL
a ≠ �cR

b �rot , (3)

where the cL
a form a real orthonormal basis of S3

eigenstates for the left subsystem and the �cR
b �rot are the

corresponding states for the right subsystem, but rotated
by an angle p around the 2 direction in spin space. This
rotation takes " into #, # into 2 ", and more generally js, m�
into �2�s2mjs, 2m�. It reverses the signs of the operators
S1 and S3, while it keeps S2 unchanged. The eigenvalue
problem Hc � Ec is now a matrix equation

hLc 1 c�hR�T 2

3X
i�1

X
y

t�i�
y c�t�i�

y �T � Ec , (4)

where �hL�ab and �hR�ab are real, symmetric matrix ele-
ments of the corresponding terms in the Hamiltonian and
the t

�i�
y are the real matrices defined for the spin operators

s1 and s2 in box y by t
�1,3�
ab � �cL

a js
�1,3�
1 1 s

�1,3�
2 jc

L
b� and

t
�2�
ab � i�cL

a js
�2�
1 1 s

�2�
2 jc

L
b�. Note the overall minus sign

of the crossing term in (4): replacing s1 1 s2 by s3 1 s4
and cL by �cR�rot gives a change of sign for directions 1
and 3, while the i in the definition of t�2� gives the minus
sign for direction 2.

Consider now the energy expectation in terms of c:

�cjHjc� � trccyhL 1 trcychR 2
X
i,y

trcyt�i�
y c�t�i�

y �y.

(5)

Since H is left-right symmetric and by assumption real,
we find that for an eigenstate of H with coefficient ma-
trix c there is also an eigenstate with matrix cy and, by
linearity, with c 1 cy and i�c 2 cy�. Without loss of
generality we may, therefore, write eigenstates of H in
terms of Hermitian c � cy. We shall also take c to be
normalized: �cjc� � trcyc � 1. Following [11], let us
write the trace in the last term of (5) in the diagonal basis
of c: 2trcyt

�i�
y c�t�i�

y �y � 2
P

k,l ckclj�t
�i�
y �klj

2. This ex-
pression clearly does not increase if we replace all the ck

by their absolute values jckj, i.e., if we replace the matrix
c by the positive semidefinite matrix jcj �

p
c2. The first

two terms in (5) and the norm of c remain unchanged un-
der this operation. We conclude that if c is a ground state
then so is jcj. Since c � c1 2 c2 and jcj � c1 1 c2,
with positive semidefinite (p.s.d.) c1 and c2, we may, in
fact, choose a basis of ground states with p.s.d. coefficient
matrices.

Next, we show that the state c0 with the unit matrix
as coefficient matrix (in the S3 eigenbasis) has total spin
zero. Since the overlap of c0 with a state with matrix
c is simply the trace of c, which is necessarily nonzero
for states with a p.s.d. matrix, and because spin is a good
quantum number of the problem, this will imply that there
is at least one ground state with total spin zero. First
consider a spin-1�2 system. In the S3 eigenbasis every
site has then either spin up or spin down. The state with
unit coefficient matrix is a tensor product of singlets on
corresponding pairs of sites i [ L, i0 [ R of the two
sublattices:

c0 �
O
i[L

�" �"�rot1 # �#�rot�ii0 �
O
i[L

�"# 2 #"�ii0 . (6)
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The analogous state for a system with arbitrary spins,

c0 �
O
i[L

sX
m�2s

��2�s2mjs, m� ≠ js, 2m��ii0 , (7)

is also a tensor product of spin-zero states.
Finally, we show that the projection onto the spin-zero

part of a state with p.s.d. coefficient matrix preserves its
positivity. This is only of academic interest here, but it is
nontrivial and may very well be important for other physi-
cal questions. To find the projection onto spin zero we
need to decompose the whole Hilbert space into tensor
products of the spin components � j�k ≠ � j0�k0 of the two
subsystems; here k, k0 are additional quantum numbers
that distinguish multiple multiplets with the same spin
j. Only tensor products with j � j0 can have a spin-
zero subspace, which is unique, in fact, and generated by
the spin-zero state

Pj
m�2j jj, m, k� ≠ �2�j2mjj, 2m, k0�.

Noting that �2�j2mjj, 2m, k0� is precisely the spin-rotated
state �jj, m, k0��rot, we convince ourselves that the projec-
tion onto spin zero amounts to a partial trace over m in a
suitably parametrized matrix c. This operation preserves
positive semidefiniteness, so we actually proved that the
checkerboard has at least one ground state that has both
total spin zero and a p.s.d. coefficient matrix c.

We do not know how many ground states there are.
To determine the spin of any remaining ground states we
add an external field to the Hamiltonian and study the
resulting magnetization. We see that the spontaneous
magnetization of every box on the symmetry line vanishes
for all ground states, and thus, if we have periodic
boundary conditions in at least one direction, the total
magnetization vanishes. Since S3

tot is a good quantum
number and S6

tot commute with the Hamiltonian, this
will imply that all ground states in such a system
have total spin zero. Let us thus modify the original
Hamiltonian (2) by replacing the term �s�3�

1 1 s
�3�
2 1

s
�3�
3 1 s

�3�
4 �2

z for a single box, z, on the symmetry line by
�s�3�

1 1 s
�3�
2 1 s

�3�
3 1 s

�3�
4 2 b�2

z , i.e., effectively adding a
field b to the spins in box z and a constant term 1

2b2

to the Hamiltonian. We want to distribute the resulting
b terms �s�3�

1 1 s
�3�
2 2 b�2�2, �s�3�

3 1 s
�3�
4 2 b�2�2, and

2�s�3�
1 1 s

�3�
2 2 b�2� �s�3�

3 1 s
�3�
4 2 b�2� to HL, HR , HC ,

respectively. We cannot use the spin rotation as before,
because the crossing terms in the Hamiltonian would no
longer be left-right symmetric in the basis (3). To avoid
this problem we will, instead, expand eigenstates c in the
same basis on the left and on the right:

c �
X
a,b

c̃abcL
a ≠ cR

b . (8)

In this basis the Hamiltonian is left-right symmetric and
we may assume, as before, that c̃ � c̃y. Except for the
presence of b in box z the energy expectations on the left
and right are as before. The energy expectation of the
5364
crossing terms of box z in the diagonal basis of c̃ is now

X
k,l

c̃k c̃l�j�t�1�
z �klj

2 2 j�t�2�
z �klj

2 1 j�t�3�
z �kl 2 b�2j2� .

This expression clearly does not increase if we replace
the ck by their absolute value jckj and change the signs
of the first and last terms. The sign change can be
achieved by simultaneously performing a spin rotation
and changing the sign of the field b in the right subsystem.
This actually completely removes b from the Hamilton-
ian. We have thus shown that the ground state energies
of the systems Hb with and H0 without the b terms satisfy
the inequality Eb $ E0. Let jb� be a ground state of Hb

and j0� a ground state of H0. It follows from the varia-
tional principle that �0jHbj0� $ �bjHbjb� � Eb $ E0.
Expressed in terms of spin operators, this reads E0 2

2�0jb�s�3�
1 1 s

�3�
2 1 s

�3�
3 1 s

�3�
4 �zj0� 1 b2 $ E0. Recall-

ing that we are free to choose both the sign and the mag-
nitude of b we find that the ground state magnetization of
box z must be zero:

�0j�s�3�
1 1 s

�3�
2 1 s

�3�
3 1 s

�3�
4 �zj0� � 0 . (9)

This quantum analog of the ice rule is true for any
box on the symmetry line, and it holds for all three
spin components. In a system with periodic boundary
conditions and an even number of sites in at least one
direction we can choose the symmetry line(s) to intersect
any given box, so in such a system the magnetization is
zero both for every single box separately and also for the
whole system: �0jS�3�

tot j0� � 0. As mentioned previously,
this implies that the total spin is zero for all ground states
of such a system.

Let us return to the inequality Eb $ E0. It implies
a bound on the local susceptibility of the system: Let
E�b� � �bjH0 2 bS

�3�
boxjb� be the ground state energy of

the periodic pyrochlore checkerboard with a single box
immersed in an external field b. Recalling Hb � H0 2

bS
�3�
box 1

1
2b2, we see that the above inequality becomes

E�b� 1
1
2b2 $ E�0� and, assuming differentiability, im-

plies an upper bound on the susceptibility at zero field for
single-box magnetization,

xloc � 2
1
l

≠2E�b�
≠b2

Ç
b�0

#
1
4

, (10)

where l � 4 is the number of spins in a box. (The
susceptibility is given in natural units in which we have
absorbed the g factor and Bohr magneton in the definition
of the field b.)

We would like to get more detailed information about
the response of the spin system to a global field 	bx

in a Hamiltonian H	bx 
 which is identical to (2), except
for the terms for the third spin component, which are
replaced by �s�3�

1 1 s
�3�
2 1 s

�3�
3 1 s

�3�
4 2 bx�2

x . From what
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we have seen so far, it is apparent that the corresponding
ground state energy E	bx
 is extremal for bx � 0. With
the help of a more sophisticated trace inequality [12] that
becomes relevant whenever the matrix c in (3) cannot
be diagonalized, one can actually show that E	bx 
 has an
absolute minimum at bx � 0:

E	bx
 $ E0 . (11)

Note that we had to put the field on the boxes for this
result to hold; not every field on the individual spins
can be written this way. The special choice bx � B�2
corresponds to a global homogeneous field B on all
spins. (The factor 1�2 adjusts for the fact that every spin
is shared by two boxes.) If E�B� � �BjH0 2 BS

�3�
tot jB�

is the ground state energy of the periodic pyrochlore
checkerboard in the external field B, then (11) implies
E�B� 1

L

16B2 $ E�0�, and thus an upper bound on the
susceptibility per site at zero field (in natural units)

x � 2
1
L

≠2E�B�
≠B2

Ç
B�0

#
1
8

, (12)

where L is the number of independent sites, which equals
twice the number of boxes.

All these results continue to hold at finite temperature.
The analog of (11) holds also for the partition function
corresponding to H	bx
,

Z	bx
 # Z0 , (13)

as can be shown by a straightforward application of
lemma 4.1 in section 4 of [10] to the pyrochlore checker-
board. The physically relevant partition function for the
periodic pyrochlore checkerboard at finite temperature in
a homogenous external field, Z�B� � tre2b�H02BS

�3�
tot �, dif-

fers from Z	bx
, where bx � B�2, only by a factor corre-
sponding to the constant term in H	bx
. Because of (13),
the free energy F�B� � 2b21 lnZ�B� satisfies

F�B� 1
L

16
B2 $ F�0� . (14)

This implies (i) that the magnetization at zero field is still
zero at finite temperature,

MT � 2
1
L

≠F�B�
≠B

Ç
B�0

� 0 , (15)

and, more interestingly, (ii) the same upper bound for
the susceptibility per site at zero field as we had for the
ground state,

xT � 2
1
L

≠2F�B�
≠B2

Ç
B�0

#
1
8

. (16)
The bounds on the susceptibility hold for arbitrary in-
trinsic spin s and agree very well with the results of
[13] for the classical pyrochlore antiferromagnet in the
undiluted case.

It is not essential for our method that only every other
square of the pyrochlore checkerboard is a frustrated unit;
only the reflection symmmetry and the antiferromagnetic
crossing bonds are important. We could, e.g., have diago-
nal bonds on every square, but then the horizontal and/
or vertical bonds must have twice the coupling strength.
Our results also apply to various three-dimensional cubic
versions of the checkerboard, e.g., with diagonal crossing
bonds in every other cube. While the method does not
directly work for the 3D pyrochlore lattice because its
geometry is too complicated, it has been seen in [5]
that classically this system has similar properties to the
pyrochlore checkerboard, which is also fully frustrated,
and has the added advantage of being more easily
visualized.

We thank Roderich Moessner for bringing this problem
to our attention, for explaining his work on the classical
pyrochlore antiferromagnet, and for numerous helpful
discussions and suggestions.
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