
VOLUME 83, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 20 DECEMBER 1999

5342
Diffractive Orbits in an Open Microwave Billiard
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We demonstrate experimentally the existence and significance of diffractive orbits in an open
microwave billiard. Orbits that diffract off a sharp edge strongly influence the conduction spectrum,
especially in the regime where there are no stable classical orbits. On resonance, the wave functions are
influenced by both classical and diffractive orbits. Off resonance, the wave functions are determined
by the constructive interference of multiple transient orbits. The experimental results agree well with
quantum computations and with a semiclassical theory that incorporates diffraction.

PACS numbers: 73.23.Ad, 03.65.Sq, 05.45.−a
Recently, Katine et al. studied the transmission behav-
ior of an open quantum billiard in the context of a two
dimensional electron gas (2DEG) in a GaAs�AlGaAs het-
erostructure [1]. Their resonator was formed by a wall
with a small aperture, called a quantum point contact
(QPC), and an arc-shaped reflector. A schematic of this
resonator is shown in Fig. 1. The voltage on the reflector
could be varied, effectively moving the reflector towards
or away from the wall. Their measurements showed a se-
ries of conductance peaks, analogous to those seen in a
Fabry-Perot, as the reflector position was varied.

The resonator shown in Fig. 1 has two distinct modes
of operation. When the center of curvature of the reflector
is to the left of the wall (the regime studied in [1]), then
almost all classical paths starting from the QPC that hit the
reflector remain forever in the region between wall and the
reflector: the dynamics is stable and the periodic orbits can
be semiclassically quantized. Each quantized mode of the
resonator can be characterized by two quantum numbers
�n, m�, which represent the number of radial and angular
nodes, respectively. As the reflector-wall separation is
varied, the conductance exhibits a peak each time one
of these quantized modes is allowed. Once an electron
is in the resonator, the only way for it to leave is by
tunneling back through the QPC or by diffracting around
the reflector; since both processes are slow, the resonances
have narrow widths. Because the QPC is on the symmetry
axis, only modes with even m can be excited.

When the center of curvature is to the right of the wall,
however, the dynamics becomes unstable: all classical tra-
jectories beginning at the QPC rapidly bounce out of the
resonator, except for a single unstable periodic orbit along
the axis of symmetry, which we will call the “horizon-
tal” orbit [see Fig. 1(b)]. Although the horizontal orbit
returns to the QPC, it has a low probability of escaping
the resonator there because the QPC is much smaller than
the de Broglie wavelength of the electron. Because the
horizontal orbit is the only periodic orbit in the unsta-
ble regime, one might expect resonant buildup only along
the symmetry axis. Such a spectrum would be quasi-one-
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dimensional, with only the half-wavelength periodicity of
a Fabry-Perot cavity. However, in numerical simulations
it was found that there were other transmission resonances
in the unstable regime which did not correspond to any
classical periodic orbits [2]. It was proposed that these
anomalous peaks are supported by diffraction off the tips
of the reflector. Unfortunately, in the mesoscopic experi-
ments, decoherence of the electron wave by impurities in
the GaAs�AlGaAs heterostructure shortens the lifetime of
the resonances, leaving insufficient energy resolution to
resolve the diffractive peaks [3].

For this reason, we decided to investigate a parallel
plate microwave resonator with a similar geometry. In
microwave experiments, decoherence and dissipation are
not a problem, the geometry of the resonator can be
specified much more accurately, and the dynamical range
of available wavelengths is much larger. The experimental
setup is shown in Fig. 2.

For the transverse electromagnetic (TEM) mode, it can
be shown that the equation governing the component of
the electric field normal to the plates is identical to the
two-dimensional time-independent Schrödinger equation

FIG. 1. (a) A schematic of the mesoscopic resonator studied
by Katine et al., with radius of curvature R, opening angle a,
and reflector-wall separation D. Electrons impinge on the wall
from the left, and the conductance to the region on the right
is measured. (b) Two closed orbits of the unstable resonator:
diffractive (dotted line) and horizontal (dashed line). These will
be discussed later in the paper.
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FIG. 2. This is the microwave analog of the mesoscopic
resonator studied by Katine et al. The antenna simulates the
QPC; to reduce its coupling to the resonator, it is placed very
close to the wall. The drawing is not to scale.

[4]. Therefore, by studying the modes of parallel-plate
resonators we can gain insight into the behavior of two-
dimensional solutions to the Schrödinger equation.

The resonator consisted of two parallel copper plates,
1 m square, separated by a distance of 1.25 cm. One
side of the resonator consisted of a copper wall. The
other three sides were lined with a 11.5 cm thick layer of
microwave absorber (C-RAM LF-79, Cuming Microwave
Corp.) designed to provide 20 dB of attenuation in the
reflected wave intensity in the range 0.6–40 GHz. The
absorber prevented outgoing waves from returning to
the resonator, thereby simulating an open system in the
directions away from the wall. An antenna was inserted
normal to the plates, 2 mm from the wall, to simulate the
QPC. The curved reflector was formed from a rectangular
aluminum rod bent into an arc with radius of curvature
R � 30.5 cm. Various opening angles a were used:
115±, 112±, 109±, and 106±.

Instead of measuring the transmission of the resonator,
we measured the reflection back to the antenna; for this
we used an HP8720D network analyzer in “reflection”
mode (the complex S11 parameter of the resonator was
measured). We inferred the transmission probability jT j2

via jT j2 � 1 2 jRj2, where R � S11 is the measured
reflection coefficient. Because of the proximity of the
antenna to the wall, it was only weakly coupled to the
resonator; therefore, in the absence of the reflector,
the transmission coefficient was close to zero. How-
ever, when the reflector was present, the transmission
experienced pronounced maxima at certain frequencies.
In Fig. 3 we show a transmission spectrum at fixed
frequency, as the distance between the wall and reflector
is varied. In the unstable regime, there are two types of
resonance. The first type, labeled f in Fig. 3, is related
to the horizontal orbit along the axis of symmetry and
bears some resemblance to a Fabry-Perot-type resonance
between two half-silvered mirrors. The second type,
labeled d, is supported by diffraction off the tips of the
reflector.

The wave functions corresponding to peaks f1 and d1
were measured using the technique of Maier and Slater [5].
They showed that the frequency shift of a given resonance
due to a small sphere of radius r0 at a position �x, y� is
FIG. 3. Experimental transmission versus reflector-wall sepa-
ration at a fixed frequency of 5.63 GHz; i.e., R � 5.7l. The
stable /unstable transition point occurs at abscissa zero. In the
stable regime, the peaks are labeled by their radial and angular
quantum numbers �n, m�. In the unstable regime, the diffractive
resonances (labeled d ) appear to the right of the Fabry-Perot
peaks (labeled f). The dashed curve is the result of a semi-
classical calculation which takes diffractive orbits into account
(see text). The opening angle for the reflector was a � 106±.
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where E0 and H0 are, respectively, the unperturbed electric
and magnetic fields. Thus, the frequency shift is propor-
tional to the local intensity of the microwave field, and,
by measuring the shift as a function of the position of
the sphere, the field intensity of a particular mode can be
mapped out. Note that the frequency shift will be positive
in regions where the magnetic field is large and negative
where the electric field is large. Also, the factor of 1�2
multiplying the magnetic field in Eq. (1) indicates that the
sphere is a stronger perturbation to the electric field than
the magnetic field.

Figure 4 shows theoretical quantum wave functions
compared with experimentally measured frequency shifts
for the resonances labeled by f1 and d1 in Fig. 3. The
measured frequency shift is plotted as a function of
sphere position. It is important to note that the frequency
shift is not proportional to E2, but rather to H2�2 2

E2. Therefore we show only negative contour lines
below 20% of the maximum negative shift, and thereby
emphasize regions of strong electric field. The similarity
between theory and experiment is striking.

The wave function labeled f1 in Fig. 4 is clearly
associated with the horizontal orbit along the axis of
symmetry. Rays emanating from a point source located
on the axis of symmetry next to the wall bounce off the
reflector and come to an approximate focus about 10 cm
from the source. The focus is approximate because of
spherical (or in this case cylindrical) aberration.

Now we turn our attention to the state labeled d1 in
Fig. 4. As noted above, the only periodic orbit in the
unstable regime is the horizontal orbit, along the axis of
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FIG. 4. Comparison between theoretical quantum wave func-
tions (left) and experimentally measured microwave frequency
shifts (right). The two modes correspond to peaks f1 and d1,
respectively, in Fig. 3. The wall is located on the left vertical
axis in each plot, and the reflector position is indicated by the
arc. The graph ticks are 10 cm apart. The fine grid indicates
the spacing of the experimentally sampled points (grid spacing
1 cm).

symmetry. The pictured wave function, however, clearly
has very little amplitude along this periodic orbit. Instead
the wave function has a band of higher amplitude running
from the region of the tip of the mirror to the QPC, but in
the unstable regime there is no classical periodic orbit that
does this. Theoretical studies have suggested that states
such as d1 are supported by orbits that undergo diffraction
off the tips of the reflector [2]. One such orbit is shown
in Fig. 1(b). Rays that hit the smooth surfaces of the
reflector or wall undergo specular reflection, whereas the
rays that hit near the reflector tips can be diffracted. A
fraction of the wave amplitude can then return to the QPC
from this region, thus setting up a nonclassical closed
orbit. All peaks labeled with a d in Fig. 3 are supported
by such diffractive orbits.

Numerical calculations have shown that for energies off
resonance, the quantum wave function is often intermedi-
ate between those shown for f1 and d1, in the sense that
amplitude seems to be running from the QPC to some
point between the center of the mirror and the tip [2].
This can be understood in terms of the interference of
paths with each other as they “walk off” the horizontal
orbit and escape the resonator. Thus diffraction does not
play a major role in determining the off-resonance wave
functions. However, diffraction is instrumental in deter-
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mining the on-resonance wave functions underlying the
conductance peaks d1 and d2 in Fig. 3.

Figure 5 shows a more global picture of the transmis-
sion properties of the resonator as both the wavelength
and the reflector-wall separation are varied.

The vertical axis indicates how many wavelengths fit
along the horizontal orbit between the QPC and the
reflector. (Thus each vertical slice through the figure is a
frequency spectrum with fixed geometry.) The repetition
of the resonance pattern every half wavelength in the
vertical direction is analogous to the half-wavelength
periodicity of a Fabry-Perot cavity. The horizontal axis
indicates the position of the reflector. The transition
between classically stable (D , R) and unstable (D .

R) motion is indicated by the dotted line.
In the stable regime we have labeled the peaks with

their quantum numbers �n, m�. The vertical axis is cho-
sen to make the m � 0 resonance peaks approximately
horizontal in this figure. As the stable/unstable transition
is approached, the peaks with high m disappear one by
one because their large angular sizes allow them to escape
around the reflector.

At the stable/unstable transition, all of the resonances in
a family would be approximately degenerate, but instead
there is an avoided crossing. The level repulsion is caused
by a coupling that is partly mediated by diffraction [6].

In the unstable regime, the only remaining classical
periodic orbit is the horizontal orbit, which itself becomes
unstable. The Fabry-Perot peak (labeled f) is essentially
quantized along the horizontal orbit, so its position shows
a simple dependence on reflector position. It becomes
broad in the unstable regime, with a lifetime given by the

FIG. 5. Experimental transmission versus reflector-wall sepa-
ration and wavelength. High transmission regions are dark. On
the left of the vertical dotted line is the stable regime, where the
transmission peaks are sharp. The quantum numbers �n, m� are
indicated for a few peaks. On the right is the unstable regime,
where the resonances become wider and diffractive orbits be-
come important. Transmission peaks supported by diffractive
orbits are marked by “d.”
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FIG. 6. Experimental return spectrum for the unstable regime.
Time has been converted to the ratio L�R, where L is the
length of the orbit. The calculated lengths of the orbits are
shown by vertical bars: long bars for the horizontal orbit, and
short bars for the diffractive orbits, which are slightly shorter.
The splitting of the peaks clearly demonstrates the influence of
both Fabry-Perot-type orbits (marked “f”) and diffractive orbits
(marked “d”). For these plots the opening angle was 115±, and
the reflector-wall separation was 32.5 cm.

classical Lyapunov stability exponent of the horizontal
orbit. Two diffractive resonances (labeled by d), are
also visible; they separate from the Fabry-Perot-type peak
as the reflector is moved away from the wall. If the
angle a subtended by the mirror is changed, the position
of the Fabry-Perot peak remains unaffected whereas the
diffractive peaks shift [6].

A semiclassical calculation of the transmission coeffi-
cient shown in Figs. 3 and 5 involves a coherent sum of
the contributions of rays that begin at the QPC, bounce
specularly around the resonator, then return to the QPC.
If only classical orbits are included, the Fabry-Perot peaks
(labeled f) are reproduced accurately but the diffractive
peaks (labeled d) are completely absent. To add diffrac-
tion to a semiclassical theory, one must also include
diffractive orbits [7,8]. We do so by adding the contri-
butions of rays that travel classically to one of the reflec-
tor tips, diffract there (weakened by an angle-dependent
factor), then travel classically back to the QPC [6]. The
result of this calculation, for the resonator in the unsta-
ble regime, is shown in Fig. 3 as a dashed line. As can
be seen, all of the experimental peaks are reproduced cor-
rectly. Therefore it can be concluded that the peaks la-
beled d are indeed due to diffractive orbits.

Further evidence of the importance of diffractive orbits
is contained in the return spectrum (Fig. 6).

If a short pulse were emitted from the antenna at time
t � 0, echos would return after various time delays. If we
Fourier transform the complex reflection scattering matrix
element S11�v� back into the time domain, we obtain
the return spectrum (Fig. 6), which shows peaks at the
times when such echos would return. For comparison, we
have also indicated the computed lengths of the horizontal
orbit and its repetitions (long vertical lines) and of the
diffractive orbits (short vertical lines). For a given number
of bounces, there are several diffractive orbits whose
lengths are similar to one another but slightly shorter than
the length of the corresponding horizontal orbit.

For some of the peaks in Fig. 6, the echo from the
horizontal orbit is resolved from the combined echos from
the diffractive orbits, and the peak is split. The presence
of this splitting in the return spectrum is strong evidence
in support of the claim that diffraction off the edges of
the reflector supports diffractive closed orbits that affect
the spectrum. Note that for the long orbits, the diffractive
peaks are even stronger than the peaks from the geometric
orbit. This is because the number of diffractive orbits
increases with the length of the orbit, whereas there is
always only one geometric orbit, regardless of length.

In summary, we have demonstrated the existence of
diffractive orbits in an open microwave billiard, which
give rise to resonances and wave functions that would
not be predicted by a simple semiclassical theory. Such
orbits are of importance in open, unstable systems where
the number of unstable classical periodic orbits is small.
In such systems, diffraction can play a major role in
determining the spectrum of the system.
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