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We consider the low-energy, long-wavelength excitations of a reconstructed quantum Hall edge
three branches of chiral one-dimensional edge excitations exist. We find that, in addition to fo
scattering between the three edge-excitation branches, Coulomb interaction gives rise to an Um
type scattering process that cannot be accounted for within a generalized Tomonaga-Luttinger
We solve the theory including Umklapp processes exactly in the long-wavelength limit and cal
electronic correlation functions.
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Two-dimensional (2D) electron systems subject to p
pendicular magnetic fields have low-lying excitations th
are localized at the sample boundary [1]. At certain v
ues of the filling factorn when the quantum Hall (QH)
effect occurs, the bulk of the 2D system turns out to
incompressible [2], and the edge excitations comprise
only low-lying excitations present.

The detailed electronic structure at the edge of Q
systems depends sensitively on the interplay betw
the external potential confining the electrons to t
finite sample, electrostatic repulsion, as well as excha
and correlation effects. For an ultimately sharp [
edge, a single branch of chiral one-dimensional (1
excitations is predicted to exist when the filling fact
n � 1�m, where m is an odd integer [4]. In that
case, the dynamics of edge excitations can be descr
[5] using a Tomonaga-Luttinger (TL) model [6] with
only the right-moving [7] degrees of freedom prese
However, for a confining potential that is just not sha
enough to stabilize a single-branch edge, a differ
configuration is realized where a lump of electron char
is separated from the bulk of the QH sample [8,9]. Su
a reconstructed edge [10–12] supports three branch
of chiral 1D edge excitations, two right-moving an
one left-moving. For even weaker confining potenti
further reconstructions occur, leading to a proliferation
edge-excitation modes [13]. The microscopic structu
of a very smooth edge is dominantly determined
electrostatics, which favors a phase separation of the
electron system at the edge into a series of alterna
compressible and incompressible strips [14].

Effective TL theories describing single-branch an
multibranch QH edges predict Luttinger-liquid behavi
[5], i.e., power laws governing the energy dependence
electronic correlation functions. The characteristic exp
nents of these power laws depend, in general, on detail
the microscopic edge structure. However, in the abse
of coupling between different chiral edge branches or,
some cases, due to disorder effects [15], power-law
ponents turn out to be universally dependent on the b
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filling factor. At present, microscopic details of the edge
structure that is realized in experiment [16] are not fully
known. To facilitate a realistic comparison between the
ory and experiment, it is necessary to study the low-lyin
edge excitations of reconstructed and smooth edges a
investigate the effect interactions have on the Luttinge
liquid power-law exponents when more than one branc
of edge excitations is present. Most importantly, it turn
out that edges having at least three chiral branches
1D edge excitations can support a new kind of scatterin
process which does not conserve particle number in ea
branch separately. This new interaction process cannot
accounted for within an effective TL-model description
Here we study an exactly soluble model for the new sca
tering process and determine its effect on the Luttinge
liquid behavior of QH edges.

We focus on the edge of a QH sample atn � 1 that
has undergone reconstruction such that three branches
edge excitations are present. To be specific, we choo
the Landau gauge where lowest-Landau-level (LLL) ba
sis statesxk�x, y� � Fk�y� exp�ikx��

p
L are labeled by

a 1D wave vectork. Here, � �
p

h̄c�jeBj denotes the
magnetic length,L is the edge perimeter, andFk� y� �
exp�2� y 2 k�2�2��2�2���

p
p1�2�. In the absence of in-

teractions between different edge branches, the grou
state will be a generalized Fermi-sea state that is a Sla
determinant of LLL basis states whose wave-vector lab
satisfiesk # k

�R�
F or k

�W�
F # k # k

�B�
F . The Fermi “sur-

face” consists of three (Fermi) pointsk
�R�
F , k

�W�
F , k

�B�
F .

As in Tomonaga’s approach to interacting 1D electro
systems [6], long-wavelength electronic excitations at th
reconstructed edge can be identified according to whic
Fermi point they belong to. This makes it possible to
rewrite the long-wavelength part of the electron operato
as follows:

c�x, y� � Fk
�R�
F

� y�eik
�R�
F xc �R��x�

1 Fk
�W�
F

� y�eik
�W�
F xc �W��x�

1 Fk
�B�
F

� y�eik
�B�
F xc �B��x� . (1)
© 1999 The American Physical Society
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The operator c �R,W ,B��x� creates an electron belonging to
the chiral 1D edge branch labeled R, W , B, respectively.
The original 2D interacting Hamiltonian specializes, in
the low-energy limit, to an effective 1D Hamiltonian
involving scattering processes of electrons close to the
three Fermi points. We can classify these interaction
processes in terms of a generalized g-ology scheme that
is familiar from the treatment of conventional interacting
1D electron systems [17] (see Fig. 1). Forward scattering
and backscattering [18] can be accounted for within a
generalized TL model [9]:

HTL �
1

2L

X
qfi0

� ��q�y�2p h̄K 1 Vq� ��2q . (2)

Here we defined the vector ��q � �� �B�
q , � �R�

q , � �W�
q � of

density fluctuations at the three Fermi points, and matrices
K � diag�y�B�

F ,y
�R�
F ,y

�W�
F � and

Vq �

0BBB@
g

�BB�
4 �q� g

�BR�
4 �q� g

�BW�
2 �q�

g
�BR�
4 �q� g

�RR�
4 �q� g

�RW�
2 �q�

g
�BW�
2 �q� g

�RW�
2 �q� g

�WW�
4 �q�

1CCCA . (3)

It is straightforward to diagonalize HTL by a transfor-
mation ��q � Mq �rq. The long range of Coulomb in-
teraction renders the matrix Mq universal in the limit
q ! 0 [9], and we find as normal modes (a) the clas-
sical [1] edge-magnetoplasmon mode, r�emp� � � �B� 1

� �R� 1 � �W�, which is right-moving, and (b) two lin-
early dispersing neutral modes, a right-moving one given
by r�rn� � �� �B� 2 � �R���

p
2, and the left-moving neutral

mode r�ln� � �� �B� 1 � �R� 1 2� �W���
p

2.
In addition to forward scattering and backscattering,

another interaction process exists which has not been
noticed previously (see Fig. 1). The full effective 1D
Hamiltonian describing edge excitations at a reconstructed
edge is actually given by H � HTL 1 HU with

HU �
ZZ

dx dx0 VU�x 2 x0�

3 ��c �R��x��y�c �B��x0��yc�W��x0�c�W��x�
3 eiD��x2x0��2�2id��x1x0��2� 1 H.c.� . (4)

Here we have used the abbreviations D � k
�B�
F 2 k

�R�
F

and d � k
�B�
F 1 k

�R�
F 2 2k

�W�
F . As the scattering process

represented by HU converts two electrons from the left-
moving W branch into electrons belonging to the right-
moving R, B branches (and vice versa), it is reminiscent
of Umklapp scattering which is important in lattice
models for conventional 1D electron systems near half
filling [19]. That this analogy reaches quite far can be
seen from the fact that there is a commensuration issue
for the novel Umklapp process at QH edges. It is most

relevant if k
�B�
F 2 k

�W�
F � k

�W�
F 2 k

�R�
F , and the parameter

d arises naturally as a measure for the deviation from
perfect commensuration [20] (see below.)

Umklapp processes do not conserve particle number
in each edge branch separately. Therefore, HU cannot
FIG. 1. Schematic depiction of quasiparticle dispersion and
interaction processes at a reconstructed QH edge. At low
energies, only interaction processes involving electrons close
to the Fermi points k

�R�
F , k

�W�
F , and k

�B�
F are important. As

examples, we show forward scattering within the R branch
(coupling constant g

�RR�
4 ) and the Umklapp process �gU�.

be written in terms of a TL model. However, using the
bosonization identity [21,22] for 1D fermionic operators,

c �R��x� � 1�
p

L : exp�if�R��x�� : , (5a)

c �W��x� � 1�
p

L : exp�2if�W��x�� : , (5b)

c �B��x� � 1�
p

L : exp�if�B��x�� : , (5c)

where : · · · : symbolizes normal ordering, and

f�a��x� � i
2p
L

X
qfi0

e2iqx

q
� �a�

q , (6)

with a [ �R, W , B�, it is possible to rewrite HU entirely
in terms of bosonic degrees of freedom:

HU � 2L2gU

Z
dx cos�f�R��x� 1 f�B��x�

1 2f�W��x� 1 dx� . (7)

Both the coupling constant gU and the incommensuration
parameter d can be determined from a microscopic cal-
culation [23], and L & �D�2�21 is a physical ultraviolet
cutoff. From Eq. (7), it is immediately obvious that HU

couples only to one of the three normal modes of HTL,
namely, the left-moving neutral mode r�ln�. Hence, the
full Hamiltonian of low-energy excitations at a recon-
structed edge is the sum of three terms, H � Hemp 1

Hrn 1 Hln, where Hemp and Hrn describe the dynamics
of free chiral bosons that are associated with the edge-
magnetoplasmon and right-moving neutral modes, respec-
tively, and

Hln �
Z

dx

Ω
h̄yln

4p
�≠xf

�ln��x��2

1 2L2gU cos�
p

2f�ln��x� 1 dx�
æ

. (8)

Here, f�ln��x� is defined in terms of r�ln� as in Eq. (6),
and yln is the velocity of the left-moving neutral mode.

Note that Eq. (8) does not correspond to the Hamil-
tonian of the familiar sine-Gordon model; but rather to
5331
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a chiral version of it. To be able to evaluate electronic
correlation functions, we employ a refermionization tech-
nique [24] that has been used before to study the effect of
disorder on transport at hierarchical QH edges [25]. We
introduce an auxiliary ghost field h�x� that has the same
chirality as the real bosonic field f�ln��x� and whose dy-
namics is given by the first term of Hln in Eq. (8):

Hh �
h̄yln

4p

Z
dx�≠xh�x��2. (9)

The Hamiltonian H 0 � Hln 1 Hh is then equivalent to
the bosonized representation of a model of chiral 1D
spin-1�2 fermions C � �C1,C2� subject to a magnetic
field �h�x� that couples to the (pseudo)spin [26] degrees of
freedom,

H 0 �
Z

dxCy�x� �ih̄yln≠x1 1 �h�x� ? �s�C�x� , (10a)

provided we define �h�x� � LgU�cos�dx�, sin�dx�, 0� and
C6�x� � 1�

p
L : exp�i�h�x� 6 f�ln��x���

p
2 � :. (We

denoted the vector of Pauli matrices by �s.) The intro-
duction of the ghost field h�x� turns out to be favorable
because it is possible to calculate physical observables
more easily in the refermionized representation of H 0

than in the original bosonic theory with Hln. Note that
real physical observables do not depend on the auxiliary
field h�x�. In Fourier space, the Hamiltonian H 0 reads

H 0 � 2h̄yln

X
ks

kc
y
kscks 1 LgU

X
k

�cy
k2d,1ck,2 1 H.c.� ,

(10b)

and is easily diagonalized, yielding

H 0 �
X
ks

�2h̄ylnk 1 sD�2�wy
kswks . (10c)

The “Zeeman splitting” induced by the fictitious mag-
netic field �h�x� is D � 2LgU�

p
1 1 j2 2 j�, where j �

h̄ylnd��2LgU� is a measure of the incommensuration. In
the ground state, the free fictitious fermions wks form two
Fermi seas, one for each spin direction, having different
Fermi wave vectors due to the Zeeman splitting.

Having diagonalized H 0, we are now in the position
to calculate dynamic correlation functions for adding
electrons at a reconstructed edge. We consider the real-
time correlation functions

G �a��x, t� � �c �a��x, t� �c �a��y�0, 0�	 , (11)

where a [ �R, W , B�. Within the bosonized represen-
tation [Eqs. (5)] of fermionic operators, the correlation
functions G �a��x, t� factorize into a product of correlation
functions in each of the three normal modes of HTL:

G �a��x, t� � LG �a�
emp�x, t�G �a�

rn �x, t�G �a�
ln �x, t� , (12a)

G
�a�
b �x, t� � �e2il

�a�
b f�b��x,t�eil

�a�
b f�b��0,0�	 , (12b)

with b [ �emp, rn, ln�. The coefficients l
�a�
b can be

read off from the matrix Mq that relates the density
5332
fluctuations at the R, W , B branches to the normal modes
of HTL. As the edge-magnetoplasmon mode and the
right-moving neutral mode are free bosons, the calculation
of G �a�

emp�x, t� and G �a�
rn �x, t� is standard [22], yielding

G
�a�
b �x, t� � �L�x 2 tyb��2�l�a�

b �2

, (13)

with b [ �emp, rn�. However, the left-moving neutral
mode is not free due to Umklapp scattering, and the calcu-
lation of G

�a�
ln �x, t� is nontrivial. Now our refermionized

representation turns out to be useful because we can cal-
culate G

�W�
ln �x, t� exactly using the identity

G
�W�
ln �x, t� � L22�Cy

1�x, t�C2�x, t�Cy
2�0, 0�C1�0, 0�	 .

(14)

An elementary calculation in the representation of the
free fermions wks yields the particle-hole correlation
function for fictitious fermions shown on the right-hand
side of Eq. (14). The leading term in the long-time, large-
distance limit turns out to be a constant,

G
�W�
ln �x, t� � C2

ln 1 O ��x 1 tyln�22� , (15a)

Cln �
gU

2p h̄yln

µ
1 2

jp
1 1 j2

∂
. (15b)

In the limit of large deviation from commensuration, i.e.,
j ! `, the constant Cln vanishes and the leading behavior
of G

�W�
ln �x, t� is given by the standard result in the absence

of Umklapp scattering.
Unlike for G

�W�
ln �x, t�, there is no simple representation

of G
�R�
ln �x, t� and G

�B�
ln �x, t� in terms of fictitious fermions.

This spoils the possibility to evaluate these correlation
functions exactly. However, applying arguments that are
familiar [27] from the study of conventional 1D electron
systems, we conjecture

G
�B�
ln �x, t� 
 G

�R�
ln �x, t� 
 Cln . (16)

The tunneling density of states A�a��´� for adding
electrons at the branch a [ �R, W , B� can be calculated
straightforwardly [28] from G �a��0, t�. We find

A�a��´� ~

(
´�l�a�

emp �21�l�a�
rn �221 for ´ , D

´�l�a�
emp �21�l�a�

rn �21�l�a�
ln �221 for ´ . D .

(17)

We see that Umklapp scattering at reconstructed QH
edges leads to a suppression of Luttinger-liquid behavior
at energies smaller than D. This suggests a scenario for
the experimental verification of Umklapp scattering. As
it is the long range of Coulomb interaction that makes
Umklapp scattering possible in the first place, screening
by a nearby metallic gate will suppress it. The clearest
indication for the presence of Umklapp scattering would
be gained in the measurement of the edge-tunneling
exponent [16] for various distances l of the gate. The
exponent should have a nonmonotonic dependence on
l, showing a peak for intermediate distances � , l ,

D. In contrast, the exponent would be a monotonously
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increasing function of l in the absence of Umklapp
scattering.

In conclusion, we have studied low-energy excitations
at a reconstructed QH edge and identified an Umklapp
process that has not been discussed previously. We
solved the theory including Umklapp exactly and evalu-
ated electronic correlation functions. It turns out that
Umklapp scattering suppresses Luttinger-liquid behavior.
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Note added.—After submission of this work, I became
aware of an independent recent study of chiral sine-
Gordon theory [29].
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