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Cooperative Evaporation in Ordered Arrays of Volatile Droplets
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We study the evaporation behavior of regular arrays of volatile droplets on a solid substrate.
observe that under certain conditions the droplets do not evaporate independently of each other
a cooperative manner. This results in the development of a superlattice which is explained in ter
matter exchange between adjacent droplets.
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When bulk mixtures are rapidly quenched below th
critical point (e.g., by lowering the temperature) pha
separation occurs which leads to an isotropic, disorde
morphology of the coexisting phases. This process is
tiated by the formation of small nuclei in a supersatura
solution. When approaching local equilibrium, larger s
percritical droplets grow at the expense of smaller on
thus causing the first peak in the structure factor to
shifted to smaller values. The latter is also known as O
wald ripening or coarsening [1] and is experimentally o
served in many systems like fluid mixtures, binary me
alloys [2], polymers [3], and colloidal systems [4].

Lifshitz, Slyosov, and, independently, Wagner (LSW
[5,6] pointed out that for small degrees of supersaturati
when the density of nucleated droplets is small, a sing
droplet picture can be used to describe the late st
growth of the condensate in an infinite system. Ev
at small supersaturations, however, many experime
of initially disordered droplets show that the late-sta
droplet distribution is broader and more symmetric th
predicted by LSW [7]. In order to understand th
behavior, it has been suggested that additional interact
between the droplets have to be taken into account [7–

Lacastaet al. [10] investigated theoretically the kinet
ics and pattern formation emerging during the evapo
tion of periodically arranged droplets. Based on numeric
solutions of the Cahn-Hilliard equation they found th
initial equal-sized droplets of a volatile liquid which ar
arranged in a quasi-one-dimensional (1D) system w
open (absorbing) boundaries do not evaporate indep
dently of each other, but in a cooperative process by ma
exchange through the gas phase. This leads to the rem
able effect that rows of droplets which are farther aw
from the absorbing boundary may evaporate earlier th
those at the boundary’s vicinity. The effect is explain
in terms of a complex interplay of matter loss through t
boundary and its redistribution between droplets.

Here we report the first experimental observation
such a cooperative droplet evaporation. Our results sh
that under appropriate geometrical constraints a perio
array of initially equal-sized droplets decays into a tw
dimensional (2D) regular superlattice where every seco
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droplet disappears by evaporation. This phenomeno
also observed in 2D numerical solutions of the Cah
Hilliard equation, which were carried out in addition.

Surfaces with well-defined adsorption sites for drople
were obtained bymicrocontactprinting (mCP) of alka-
nethiols. Since there is a vast amount of literatu
on mCP [11] we will refer to this technique only in
brief. Stamps were fabricated by casting the elastom
poly(dimethylsiloxane) onto a silicon wafer which wa
topographically structured by electron-beam lithograph
As substrates we used 30 nm gold films vacuum depos
on glass slides. We stamped for 2 s with a 2.5 m
ethanolic solution of HS�CH2�11-OH, an OH-terminated
thiol, which resulted in well-defined hydrophilic site
corresponding to the protruding parts of the stamp [1
The formation of a thiol monolayer should be essentia
completed under these conditions [13]. Afterwards t
substrate was dipped into a 2.5 mM ethanolic soluti
of HS�CH2�17CH3, a CH3-terminated thiol, for�3 min
to make the remaining bare gold surface hydrophob
The chemical contrast of the samples was controlled
be in agreement with the stamp pattern by lateral fo
microscopy [11]. The experiments were performed und
ambient conditions (about 40% humidity) in a close
cell with diethylene glycol as test liquid because it has
relatively low vapor pressure of 0.01 mbar [14].

After diethylene glycol was quenched from supers
urated vapor onto the substrate we obtained an array
well-ordered, equal-sized volatile droplets reflecting t
geometry of the underlying hydrophilic surface patter
In order to characterize the temporal change in the
sorbate structures during the evaporation process we u
an optical microscope (dark field illumination in transmi
sion) with a CCD camera connected to a video recorde

Figure 1(a) shows a typical section of the hexagona
shaped array of droplets with65 mm side length. The
bright and dark areas correspond to the droplets and
unwetted substrate, respectively. In the following we w
refer to this geometry as “honeycomb pattern.” The rad
of the droplets’ contact line was determined to0.75 mm
and the next neighbor distance to2.5 mm. Outside the
hexagonal region where the substrate is not patterned
© 1999 The American Physical Society
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FIG. 1. Optical microscope pictures (dark field illumination) (77.2 3 66.8 mm2) of the temporal evolution of an ordered array of
diethylene glycol droplets (bright) on a gold substrate (dark). Photographs were taken immediately (a), 405 s (b), and 445 s (c)
after the liquid was adsorbed onto the surface. The insets correspond to a magnified area of the corresponding pictures and clearly
demonstrate that droplets A remain almost constant in size, whereas droplets B shrink considerably as time proceeds.
homogeneously hydrophobic, the droplets are adsorbed
statistically. Figure 1(b) shows the sample about 405 s
after the diethylene glycol had been adsorbed. In contrast
to Fig. 1(a) where all the droplets had identical diameters,
this is no longer the case in Fig. 1(b). This becomes even
more pronounced 40 s later in Fig. 1(c), where some of the
droplets became considerably smaller while others did not
change noticeably in size. A closer analysis reveals that
the positions of smaller and larger droplets are not irregu-
lar, but that the initial honeycomb pattern changed into
a triangular superlattice during evaporation. Obviously,
the droplets within the patterned area of the sample do not
evaporate independently of each other, but cooperatively as
already suggested by Lacasta et al. [10]. Outside the
structured region no regular pattern formation was ob-
served [Figs. 1(a)–1(c)].

In order to quantify the temporal development of the su-
perlattice structure, we measured the average light inten-
sity of the droplets at the superlattice sites (A) and those
at the remaining sites (B) independently of each other dur-
ing the evaporation process. This was done by an image
processing system. The intensities IA and IB are related
to the size of the droplets at the corresponding sites; there-
fore the ratio IR � IB�IA can be used to decide whether
the droplets evaporate independently of each other or not.
If the droplets evaporate in an uncorrelated manner, IR will
remain close to 1; otherwise significant deviations are ex-
pected. A typical example of the temporal behavior of IR

is plotted in Fig. 2. At the beginning of the experiment
(t � 0) IR is close to 1 because all the droplets have about
the same size. During the first 360 s this value changes
only slightly which indicates that the droplet size ratio re-
mains quite stable during this interval. As can be seen, it
is only in the last 90 s of the experiment that IR suddenly
decreases to about 0.68, i.e., the droplets at sites A become
larger compared to those at sites B and the superlattice is
formed. Finally all the droplets disappear by evaporation.

The formation of superlattices does not seem to be re-
stricted to particular distances l and contact radii a of the
droplets. It was also observed for honeycomb structures
with l � 2, 1.7 mm and a � 0.7, 0.5 mm, respectively.
Similar results were also obtained for ethylene glycol with
a roughly 10 times higher vapor pressure than that of di-
ethylene glycol [14].

Before we turn to a theoretical model, which shows the
same effect in 2D, we suggest a simple mechanism to
understand the origin of the observed cooperative droplet
evaporation. This model starts with two prerequisites: the
long-range character of the concentration diffusional field
and the vapor pressure of curved surfaces.

Droplets of volatile liquids can mutually interact by
exchanging matter through the gas phase. To estimate
the range over which sessile evaporating droplets can ex-
change matter by diffusion one has to calculate how the va-
por pressure p, i.e., the concentration profile c�r�, around
a sessile droplet of a radius of curvature of R0 and contact
angle Q, decays laterally. Supposing a steady state
regime, c�r� fulfills a Laplace equation (Dc � 0). It was
already pointed out by Maxwell (see, e.g., Ref. [15]) that
there is an analogy between c�r� and the electrostatic po-
tential of a spherical cap shaped electrode on a conducting

FIG. 2. Temporal behavior of IR � IB�IA. The decrease of
the signal after about 360 s corresponds to a change in the
geometry of the droplet pattern from a honeycomb to a
triangular lattice. The error of the data points is less than 5%.
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surface. Consequently, when considering only the first
term in a multipole expansion one finds c�r� 2 c0 ~

1
r ,

with c0 being the background concentration.
The vapor pressure p at the liquid�gas interface is

well known to depend on its curvature. For a droplet
of radius R0 this is described by the Kelvin equation
ln p�R0�

p`
�

2gVm

R0RT , where p` is the vapor pressure above
the plane surface, g is the liquid’s surface tension, Vm

is the molar volume, R is the gas constant, and T is
the temperature [16]. Accordingly, a large droplet in
the vicinity of a smaller one will increase in size at the
expense of the smaller one which eventually disappears.
This scenario is very similar to the above mentioned LSW
coarsening mechanism where the radius of small, initially
supercritical condensate droplets can get surpassed by
the critical radius as time proceeds; i.e., they become
subcritical and eventually die out.

For simplicity, we will limit this qualitative explanation
to a 1D case but the picture can be extended to 2D (as
shown below). Let us assume several sessile droplets of
initially equal size with an open (absorbing) boundary
at the left side (dashed line) which is characterized by
the saturated vapor pressure p` (Fig. 3). Immediately
after the formation of droplets, there is a diffusional flux
of matter as indicated by the grey arrows [Fig. 3(a)].
While the droplets far away from the boundary are in
quasiequilibrium (regarding gain and loss of matter), this
is not the case for the leftmost droplet. There is an
effective flow of matter from this droplet across the
boundary (black arrow) which leads to a reduction of
the radius of droplet B [Fig. 3(b)]. This, however, brings
droplet B out of balance with respect to the vapor pressure
of A [cf. Eq. (1)] and thus causes a net flow from B to A.
As a consequence, A starts to grow (at the expense of
B) which in turn reduces its vapor pressure and therefore
leads to an effective mass flow from B0 to A0 [Fig. 3(c)].
This again leads to a shrinking of B0 and the growth of
A0 and so on [Fig. 3(d)]. Thus, by exchange of matter
between next neighbors, one obtains an instability (here

FIG. 3. Sketch of the pattern formation by cooperative evap-
oration of a droplet array in the vicinity of a wall. The arrows
denote the net mass exchange by evaporation.
5304
induced by a boundary) which can proceed over the whole
system. It can be shown by geometrical considerations
that a square lattice or a honeycomb pattern (the latter
used in our experiments) is commensurate with this
mechanism to take place in 2D.

In reality the situation is more complicated as there
is also evaporation of matter in the vertical direction
which takes place on top of the matter exchange between
droplets as described above. Therefore it is only the rela-
tive size of droplets which changes upon the cooperative
evaporation process while the absolute radii of both kinds
of droplets decrease due to evaporative losses.

In principle the effect should also occur on other length
scales, although the degree of supersaturation becomes
smaller with increasing droplet size. Furthermore, at
larger absolute distances one has to take into account
the increased time required for lateral matter exchange
which then may compete with the vertical diffusion, the
latter determining the lifetime of a droplet. Therefore,
and because of the reduced number of pinning centers, this
makes experiments on a small length scale favorable.

So far we have assumed that a droplet always reduces
its radius upon evaporation as suggested by Young’s
equation. The situation, however, is more complex on
patterned surfaces [17]. If the volume V of a droplet
on a circular hydrophilic patch is so large that it covers
the whole patch, its contact line is pinned to the circular
boundary. Accordingly, a reduction in V may lead to a
larger radius of curvature and thus— in contrast to the
above—would cause larger droplets to decrease at the
profit of smaller ones and lead to monodisperse droplet
arrays. Only when the droplets do not cover the whole
hydrophilic patch, their contact angles are constant as
described by Young’s equation and thus cause their radii
to become smaller upon evaporation which allows the
above described effect to occur.

We assume that we initially prepared our system in a
state where the contact lines of the droplets are fixed.
The system then starts to evaporate and finally reaches a
situation where all droplets have (due to the stabilization
process described above) more or less the same size.
During this process which may take several minutes
(depending on the initial amount of adsorbed liquid)
the droplets are expected to remain about equal in size
(cf. Fig. 2). Only when the droplets pass a critical size
they enter the regime of constant contact angle and the
cooperative evaporation should occur. Accordingly the
development of superlattices should take place only in
the last part of the experiment where the droplets are
smaller than the supporting hydrophilic patches. This
scenario agrees well with the temporal behavior of IR ,
which has been discussed above (cf. Fig. 2). As the
superlattice formation is induced by the boundaries the
underlying geometrical pattern was chosen in a way that
the outermost droplets correspond to sites B.

It has already been pointed out by Lacasta et al. [10] that
the phenomenon of cooperative droplet evaporation can
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FIG. 4. Time evolution of the concentration profile as calcu-
lated by a 2D Cahn-Hilliard equation.

be qualitatively described by a concentration field c�r, t�,
with the liquid phase corresponding to c � 1 and the vapor
phase corresponding to c � 0. The time development of
this concentration field is then determined by the Cahn-
Hilliard equation:

≠c�r, t�
≠t

�
D
2

D�2c�1 2 2c� �1 2 c� 2 Dc� , (1)

which is given here in a dimensionless form, and the
diffusion parameter set to unity in the following. In the
x direction we use absorbing boundary conditions, which
means physically that the system is in equilibrium with the
saturated vapor (m is the chemical potential),

c�rB, t� � m�rB, t� � 0 ; t, rB of the boundary. (2)

While Lacasta et al. treated a quasi-1D system, we take
into account a 2D coupling between the droplets. To do
this we start from a honeycomb pattern of concentration
profiles. In the y direction we use periodic boundary
conditions.

In order to treat Eqs. (1) and (2) numerically, we dis-
cretize the spatial degrees of freedom to second order
using symmetric difference operators. The resulting sys-
tem of ordinary differential equations (ODEs) is stiff due
to the influence of the discrete D2 operator. To avoid
the stability problems of the usual Runge-Kutta-Fehlberg
methods, we utilize a BDF (backward difference formula)
solver [18] to get numerical solutions of the ODE system.
Because of the good stability properties and step-size con-
trol of the BDF solver we can easily handle 2D systems
and continue the calculation to long times [19]. In Fig. 4
the time development of the calculated 2D concentration
profile is shown. One recognizes as in the experiment the
development of a triangular superlattice in an intermediate
time regime. Owing to the limited size of our simulation
box, further superstructures could not be observed. How-
ever, a Fourier analysis of a triangular lattice of critical-
droplets by Burghaus [20] indicates that certain rows may
grow while others shrink.

Finally we want to point out that superlattice forma-
tion may not only be induced by an absorbing boundary
but also by local defects, e.g., a missing droplet inside
the pattern. Numerically, this was achieved by prepar-
ing a closed system with periodic boundary conditions in
both directions and a small, but finite density of defects.
We observed that also in this case superlattice structures
commensurate with the initial defects were formed. Addi-
tionally, the process observed here may also have conse-
quences for the design of gas sensors comprised of liquid
droplet arrays which are sensitive to environmental condi-
tions, e.g., humidity [21,22].

In summary, we have investigated the kinetics and pat-
tern formation during the evaporation process of ordered
droplet arrays. We find that under appropriate conditions
the droplets do not disappear independently of each other
but evaporate in a cooperative process, which leads to the
formation of a superlattice structure. This is to our knowl-
edge the first direct experimental evidence for spatial cor-
relations during Ostwald ripening in a quasi-3D-system
[9]. The same effect is found in numerical solutions of a
2D Cahn-Hilliard equation. Our results confirm that the
observed development of superlattice structures is quite
generic and should also occur in other systems like poly-
mer mixtures or binary metal alloys.
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